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Incorporation of beam focusing uncertainties 
(v3r5p9 release of G4LBNE) within 

PRISM Analysis

● Focusing uncertainties: 
- the position, geometry, and composition of the 
beamline components (horns, target, decay pipe, etc)
- the current or water layer in each horn
- the geometry of the incident proton beam

● Previous flux focusing systematics (Nov 17) are 
incomplete and include only 2 horns

● New (not present in the previous releases) uncertainties:
- tilt of target, horns, decay pipe
- horns’ inner conductor deformations 
- major updates to the decay pipe geometry and 
positioning
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Incorporation of beam focusing uncertainties (v3r5p9 release of G4LBNE) 
within PRISM Analysis

● Use flux systematics provided by P. Weatherly (/pnfs/dune/persistent/users/pweather/fluxfiles/g4lbne/v3r5p9/QGSP_BERT/)

Rebin for PRISM Analysis needs 
(diff E binning for diff OA bins) 

Apply the systematics to ND data 
  – Check how the fractional shift 
  (1σ Shift– Nominal) /Nominal looks in ND data     
  as a function of Off-axis position vs True Eν

Linearly combine nominal 

ND data and nσ shifted ND data 

Fractional shift (Lin. Comb. 1σ Shifted ND 
data – Lin. Comb Nominal ND data) / Nominal 
of PRISM Prediction vs energy

Rebin in E for PRISM Analysis needs 

Apply the systematics to FD data 
  – Check how the fractional shift 
  (1σ Shift– Nominal) /Nominal looks in 
  FD data vs energy

- nominal: OfficialEngDesignSept2021/neutrino/flux
- shift: OEDS21_HornADisplaceTransverseX_pos_1_sigma/neutrino/flux

if different → flux parameter expected to have         
high impact on the PRISM sensitivity                       
(IMPORTANT parameter)

1. Compare FD Fractional and PRISM Fractional: 

● FD files – Flux vs Neutrino energy● ND files – Flux vs Off Axis vs Neutrino Energy
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Incorporation of beam focusing uncertainties (v3r5p9 release of G4LBNE) 
within PRISM Analysis

● Use flux systematics provided by P. Weatherly (/pnfs/dune/persistent/users/pweather/fluxfiles/g4lbne/v3r5p9/QGSP_BERT/)

Rebin for PRISM Analysis needs 
(diff E binning for diff OA bins) 

Apply the systematics to ND data 
  – Check how the fractional shift 
  (1σ Shift– Nominal) /Nominal looks in ND data     
  as a function of Off-axis position vs True Eν

Linearly combine nominal 

ND data and nσ shifted ND data 

PRISM linear combination (@nσ) energy

● FD files – Flux vs Neutrino energy

Rebin in E for PRISM Analysis needs 

Apply the systematics to FD data 
  – Check how the fractional shift 
  (1σ Shift– Nominal) /Nominal looks in 
  FD data vs energy

2. Apply corresponding systematics (each 
parameter at a time) to the PRISM Analysis and 
evaluate the oscillation parameter sensitivity

- nominal: OfficialEngDesignSept2021/neutrino/flux
- shift: OEDS21_HornADisplaceTransverseX_pos_1_sigma/neutrino/flux

● ND files – Flux vs Off Axis vs Neutrino Energy
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New Flux Systematics – September 2021

September 2021: 45 flux parameters (beam systs)
" HornADisplaceTransverseX ",
" HornBDisplaceTransverseX ",
" HornCDisplaceTransverseX ",
" HornADisplaceTransverseY ",
" HornBDisplaceTransverseY ",
" HornCDisplaceTransverseY ",
" DecayPipe3SegmentBowingX ",
" DecayPipe3SegmentBowingY ",
" DecayPipeDisplaceTransverseX ",
" DecayPipeDisplaceTransverseY ",
" DecayPipeEllipticalCrossSectionXA ",
" DecayPipeEllipticalCrossSectionYB ",
" DecayPipeGeoBField ",
" DecayPipeLength ",
" DecayPipeRadius ",
" DecayPipeTiltX_DSOA ",
" DecayPipeTiltY_DSOA ",
" HornADisplaceLongitudinalZ ",
" HornAEccentricityXInducedBField ",
" HornAEllipticityXInducedBField ",
" HornATiltTransverseX ",
" HornATiltTransverseY ",
" HornBDisplaceLongitudinalZ ",

" HornBEllipticityXInducedBField ",
" HornBTiltTransverseX ",
" HornBTiltTransverseY ",
" HornCDisplaceLongitudinalZ ",
" HornCEccentricityXInducedBField ",
" HornCEllipticityXInducedBField ",
" HornCTiltTransverseX ",
" HornCTiltTransverseY ",
" HornCurrent ",
" HornWaterLayerThickness ",
" ProtonBeamAngleX ",
" ProtonBeamAngleY ",
" ProtonBeamRadius ",
" ProtonBeamTransverseX ",
" ProtonBeamTransverseY ",
" TargetDensity ",
" TargetDisplaceTransverseX ",
" TargetDisplaceTransverseY ",
" TargetLength ",
" TargetTiltTransverseX ",
" TargetTiltTransverseY ",
" TargetUpstreamDegredation "

September 2021 flux focusing parameters

10 IMPORTANT (influence the sensitivity significantly)

8 SEMI (influence the oscillation fit much less)

27 NEGLIGIBLE (negligible effect on the oscillation fit)

● Analysis variable is reconstructed neutrino 
energy: EnuReco 

→ all of the presented results are obtained by using 
EnuReco unless stated otherwise

→ Investigate the effect each individual parameter
     has on the PRISM oscillation analysis

* temporary classification  (some of important parameters might be considered semi in 
the end)
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Horn A Displace Transverse X
IMPORTANT

- 1σ shift = 0.5 mm
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Decay Pipe Geo BField SEMI
- 1σ shift = 1: scale factor value of 1 is 1σ tolerance 
(mapped from NuMI Decay Pipe Geo Bfield measurements)
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Horn A Displace Transverse Y NEGLIGIBLE
- 1σ shift = 0.5 mm
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New Flux Systematics (Sept 21) – Important parameters

10 IMPORTANT parameters: influence the sensitivity significantly

- HornADisplaceTransverseX  → 1 σ shift = 0.5 mm

- HornBDisplaceTransverseX → 1 σ shift = 0.5 mm

- HornCDisplaceTransverseX → 1 σ shift = 0.5 mm

- HornAEccentricityXInducedBField → 1 σ shift = 0.035 mm

- HornATiltTransverseX → 1 σ shift = 0.5mm

- HornCEccentricityXInducedBField → 1 σ shift = 0.07 mm 

- HornCurrent → 1 σ shift = 3 kA (1%)

- HornWaterLayerThickness→ 1 σ shift = 0.5 mm

- ProtonBeamTransverseX → 1 σ shift = 0.5 mm

- TargetUpstreamDegredation → 1 σ shift = 5 mm

● New uncertainties (not present in TDR): Horn C Displace Transverse, Eccentricity X (both A and C), 
Horn Tilt (horn A), target upstream degredation 
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New Flux Systematics (Sept 21) – Important parameters

10 IMPORTANT parameters: influence the sensitivity significantly

- HornADisplaceTransverseX  → 1 σ shift = 0.5 mm

- HornBDisplaceTransverseX → 1 σ shift = 0.5 mm

- HornCDisplaceTransverseX → 1 σ shift = 0.5 mm

- HornAEccentricityXInducedBField → 1 σ shift = 0.035 mm

- HornATiltTransverseX → 1 σ shift = 0.5mm

- HornCEccentricityXInducedBField → 1 σ shift = 0.07 mm 

- HornCurrent → 1 σ shift = 3 kA (1%)

- HornWaterLayerThickness→ 1 σ shift = 0.5 mm

- ProtonBeamTransverseX → 1 σ shift = 0.5 mm

- TargetUpstreamDegredation → 1 σ shift = 5 mm

● New uncertainties (not present in TDR): Horn C Displace Transverse, Eccentricity X (both A and C), 
Horn Tilt (horn A), target upstream degredation 

Need further 
discussion
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Horn A Eccentricity X Induced Bfield IMPORTANT

- 1σ shift = 0.035 mm: NuMi Horn 1 tolerance assumed 
(off axis deformation of inner conductor) 

Fractional shift effect (+1σ) on the ND vs 
OA vs True Eν

Fractional shift effect on 
linear combination vs FD 

→ significant influence on the sensitivity

Obtained from 
existent flux files 

from flux files 

Linear combination ND data nominal – 
linear combination ND data 1 σ shift 

Nominal 
(no systs)

With 
HornAEccentricityX
as systematics

● Very low uncertainties for on-axis data → uncertainties start to become significant for data at several off-axis 
positions; maximum shift around 5m off-axis and neutrino energies ~  3GeV

→ Does it make sense that a tolerance of 35 μm in the off axis deformation of the inner conductor 
results in uncertainties up to 2.5% in the ND fluxes? - if it does.. can we do better than 35 μm  ?
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IMPORTANTHorn C Eccentricity X Induced Bfield

- 1σ shift = 0.07 mm: NuMi Horn 2 tolerance assumed 
(off axis deformation of inner conductor)→ significant influence on the sensitivity

Fractional shift effect (+1σ) on the ND vs 
OA vs True Eν

Fractional shift effect on 
linear combination vs FD 

from flux files 

Linear combination ND data nominal – 
linear combination ND data 1 σ shift 

Nominal 
(no systs)

Obtained from 
existent flux files 

● Very low uncertainties for on-axis data → uncertainties start to become significant for data at several off-axis 
positions; maximum shift around 10m off-axis and neutrino energies ~  1.5 GeV 

– high uncertainties 3 % (compared to HornAEccentrictity X) for all off-axis positions

→ Does it make sense that a tolerance of 70 μm in the off axis deformation of the inner conductor 
results in uncertainties up to 3.5% in the ND fluxes? - if it does.. can we do better than 70 μm  ?

With 
HornCEccentricityX
as systematics
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Target Upstream Degredation IMPORTANT

- 1σ shift = 5 mm loss: assume complete loss of target on upstream end   
(a shorter target by dz shifted downstream by the loss dz) → significant influence on the sensitivity

Fractional shift effect (+1σ) on the ND vs 
OA vs True Eν

Fractional shift effect on 
linear combination vs FD 

● Very high uncertainties for ND on-axis data (up to 50% at Eν ~ 4 GeV) +  off-axis uncertainties also high:  ~15%
● High uncertainties (up to 15%) for FD as well 

→ Do we expect 50% uncertainties from a 5 mm target loss? Why so high uncertainties for 
this parameter? 

from FD flux files 

Linear combination ND data nominal – 
linear combination ND data 1 σ shift 

- is a tolerance of 5 mm feasible? Could we do better?

With 
TargetUpstream
Degredation
as systematics

Nominal 
(no systs)
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Target Upstream Degredation
IMPORTANT

→ cross check with fluxes from the provided root files: visible difference in the shifted flux  

- 1σ shift = 5 mm loss: assume complete loss of target on upstream end 
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Target Upstream Degredation vs HornCurrent
→ fractional error obtained from the flux files (original energy binning)

High fractional uncertainties (up to 50%) for TargetUpstreamDegredation parameter are coming from the 
original root files (not a re-binning issue) 



16

● Horn Eccentricity X Induced Bfield (off axis deformation of inner conductor)

Open questions:

→ why so high uncertainty values ( 1 sigma shift = 0.035 mm resp. 0.07 mm) up to 3%? 

● Decay Pipe Geomagnetic field (1 σ shift = 1: nominal – 0 no Earth magnetic filed, 1 – 
NuMi value) 

● Target Upstream Degredation (5 mm loss at 1 σ)

→ why are the uncertainties so high? (up to 50% for on-axis at E ≈ 4GeV)

→ what is the assumption for the uncertainty calculation? 
→ relatively high values for the uncertainties: 1.5%

● Could we cross check (i.e reproduce the *worrying* systematics..?)

→ do we have access to Pierce’s code?

→ do we have anyone (manpower..) who could help with this.. → how difficult would it be?
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Slide dedicated to path of files and histograms used from Pierce’s files

● ND files: 
– nominal:/pnfs/dune/persistent/users/pweather/fluxfiles/g4lbne/v3r5p9/QGSP_BERT/OfficialEngDesignSept2021/neutrino/flux/
histos_g4lbne_v3r5p9_QGSP_BERT_OfficialEngDesignSept2021_neutrino_LAr_center.root

○ Nominal Flux histogram: Unosc_numu_flux_DUNEPRISM_LAr_center – TH2D histogram neutrino flux vs energy vs off-axis positions (neutrino energy 
on x-axis, off-axis position on y-axis and neutrino fluxes on z-axis)

● Energy binning: E [0, 8GeV] – 0.005 GeV bin width
          E (8, 114 GeV] – 0.25 GeV bin width

● OA binning:   OA  [-4.0,  36.925 m] – 0.05 m bin width 

– shift: /pnfs/dune/persistent/users/pweather/fluxfiles/g4lbne/v3r5p9/QGSP_BERT/OEDS21_HornADisplaceTransverseX_pos_1_sigma/neutrino/flux/
histos_g4lbne_v3r5p9_QGSP_BERT_OEDS21_HornADisplaceTransverseX_pos_1_sigma_neutrino_LAr_center.root

○ Shifted flux histogram: Unosc_numu_flux_DUNEPRISM_LAr_center – TH2D histogram neutrino flux vs energy vs off-axis positions (neutrino energy 
on x-axis, off-axis position on y-axis and neutrino fluxes on z-axis)

● Energy binning: E [0, 8GeV] – 0.005 GeV bin width
          E (8, 114 GeV] – 0.25 GeV bin width

● OA binning:   OA  [-4.0,  36.925 m] – 0.05 m bin width 

● FD files:

– nominal: /pnfs/dune/persistent/users/pweather/fluxfiles/g4lbne/v3r5p9/QGSP_BERT/OfficialEngDesignSept2021/neutrino/flux/
histos_g4lbne_v3r5p9_QGSP_BERT_OfficialEngDesignSept2021_neutrino_finemc.root

○ Nominal flux histogram: Unosc_flux_numu_finemc_DUNEFD – TH1D hisotgram neutrino flux vs energy
● Energy binning: E [0, 8GeV] – 0.005 GeV bin width

          E (8, 114 GeV] – 0.25 GeV bin width

– shift: /pnfs/dune/persistent/users/pweather/fluxfiles/g4lbne/v3r5p9/QGSP_BERT/OEDS21_HornADisplaceTransverseX_pos_1_sigma/neutrino/flux/
histos_g4lbne_v3r5p9_QGSP_BERT_OEDS21_HornADisplaceTransverseX_pos_1_sigma_neutrino_finemc.root

○ Shifted flux histogram:  Unosc_flux_numu_finemc_DUNEFD – TH1D hisotgram neutrino flux vs energy
● Energy binning: E [0, 8GeV] – 0.005 GeV bin width

          E (8, 114 GeV] – 0.25 GeV bin width
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BACKUP
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Target Upstream Degredation IMPORTANT
- 1σ shift = 5 mm loss: assume complete loss of target on upstream end 
(a shorter target by dz shifted downstream by the loss dz)
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IMPORTANT
Horn A Eccentricity X Induced Bfield 

- 1σ shift = 0.035 mm: NuMi Horn 1 tolerance assumed 
(off axis deformation of inner conductor)

Fractional shift effect (+1σ) on the ND Fractional shift effect (+1σ) on the FD 
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IMPORTANT
Horn A Eccentricity X Induced Bfield 

- 1σ shift = 0.035 mm: NuMi Horn 1 tolerance assumed 
(off axis deformation of inner conductor)

● PRISM linear combination (ND) fractional shift is much higher than the oscillated FD one + different energy 
dependence between ND and FD→ high impact on the oscillation parameters sensitivity
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Horn A Displace Transverse X IMPORTANT
- 1σ shift = 0.5 mm

● Significant sensitivity reduction → where does this comes from?
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IMPORTANT
- 1σ shift = 0.5 mm

Horn A Displace Transverse X

- look at both FD and ND fractional ratios versus energy when the the flux parameter of interest is shifted by 1 σ 

Linearly combine to get the 
PRISM fractional uncertainty

Fractional shift effect (+1σ) on the ND Fractional shift effect (+1σ) on the FD 
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IMPORTANT
- 1σ shift = 0.5 mm

Horn A Displace Transverse X

● PRISM linear combination (ND) fractional shift is much higher than the oscillated FD one + different energy 
dependence between ND and FD→ high impact on the oscillation parameters sensitivity
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IMPORTANTHorn A Displace Transverse X

Max 1% for 1σ shift

Why such a big 
sensitivity reduction?

● Systematics allowed to vary in a +/- 3 σ range

● χ2 calculation is using Asimov data (PRISM Pred – Asimov data) → nominal PRISM prediction for different 
scan parameters has a poor agreement with the Asimov data → for certain parameters a maximum systematics 
shift (+/- 3 σ) results in a better match 

● Limit maximum systematics shift to +/- 1 σ and re-evaluate the PRISM sensitivity
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● Better sensitivity with a maximum +/-1 σ (< 1%) systematics shift

- highest sensitivity reduction correspond to +/- 3  σ shift (< 3%)

IMPORTANTHorn A Displace Transverse X
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Updates to the Decay Pipe
Geometry and positioning

● tolerance of 2 cm in the decay pipe radius
● length of the pipe expected to change 1σ = 2.5 cm @ 1.2 MW
● transverse offset of the decay pipe in X, Y by 2.5 cm
● transverse tilt of the upstream end of decay pipe by 2.5 cm 
● elliptical cross section of the decay pipe: expectation the decay pipe will come out of round as it 

settles (2.5 cm tolerance in both X(A) and Y(B) )
● possibility the pipe can be bowed along the beamline
● uncertainty due to the effect of the Earth’s geomagnetic field: geomagnetic field measured in NuMI 

decay pipe was mapped into DUNE decay pipe, and a scale factor of 1 is used to tune the strength of 
the B-field vector. (0 – nominal, 1-NuMI)

● vary radius by large tolerance (10 cm) 
→ dominant uncertainty in the region of 
interest (E < 4.5 GeV)

- before (1 parameter): 

- now: (11 parameters)
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Decay Pipe Geo BField SEMI
- 1σ shift = 1: scale factor value of 1 is 1σ tolerance 
(mapped from NuMI Decay Pipe Geo Bfield measurements)
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Decay Pipe Geo BField SEMI
- 1σ shift = 1: scale factor value of 1 is 1σ tolerance 
(mapped from NuMI Decay Pipe Geo Bfield measurements)
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SEMI
- 1σ shift = 1: scale factor value of 1 is 1σ tolerance 
(mapped from NuMI Decay Pipe Geo Bfield measurements)

Decay Pipe Geo Bfield

- high uncertainty values for this parameter, BUT partially canceled out by the antineutrino channel (not a 
significant influence on the oscillation parameter sensitivity) 
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BACKUP: Decay Pipe Geo Bfield: neutrino channel νμ→νμ

SEMI
- 1σ shift = 1: scale factor value of 1 is 1σ tolerance 
(mapped from NuMI Decay Pipe Geo Bfield measurements)
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BACKUP
Decay Pipe Geo BField: antineutrino channel νμ→νμ

SEMI
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BACKUP: Decay Pipe Geo BField SEMI

νμ→νμ

νμ→νμ
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Decay Pipe Radius

- 1σ shift = 2cm: changed from 10 cm (nominal = 2m)

SEMI

Used to be IMPORTANT in the old (Nov17) systematics!
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Decay Pipe Radius

- 1σ shift = 2cm: changed from 10 cm (nominal = 2m)

● Comparable ND and FD uncertainties: max. of 0.8%

SEMI
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Decay Pipe Radius

- 1σ shift = 2cm: changed from 10 cm (nominal = 2m)

● Maximum difference between PRISM prediction (ND) and FD of ≈ 0.15%

SEMI
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Decay Pipe Radius → Comparison to Nov17 systematics

Decay Pipe Radius Nov17

Decay Pipe Radius Sep21

Sept 21: 
1σ = 2 cm

Nov 17: 
1σ = 10 cm

Much smaller uncertainties with the new (Sep 21) systematics→ increased sensitivity 

SEMI
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Flux normalization: Unoscillated versus Oscillated 

Nominal fluxes ratio Unoscillated / Oscillated

→ if the oscillated flux is chosen as the    
normalization factor:

- fractional error a factor of ~ 40 larger
- peak structure @ ~2.6 GeV

→ FD unoscillated flux is used as
 normalization factor
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Decay Pipe Displace Transverse X

- 1σ shift = 2.5 cm

SEMI
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Decay Pipe Displace Transverse X

- 1σ shift = 2.5 cm

SEMI
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Decay Pipe Displace Transverse X

- 1σ shift = 2.5 cm

● Maximum difference between PRISM prediction (ND) and FD of ≈ 0.25% (larger than in the case of decay pipe 

radius → stronger sensitivity reduction) 

SEMI
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Decay Pipe Elliptical Cross Section X A

- 1σ shift = 2.5 cm: ellipse with A (x-axis) varied while the other 
     dimension fixed to nominal radius

SEMI
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Decay Pipe Elliptical Cross Section X A

- 1σ shift = 2.5 cm: ellipse with A (x-axis) varied while the other 
     dimension fixed to nominal radius

SEMI
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Decay Pipe Elliptical Cross Section X A

- 1σ shift = 2.5 cm: ellipse with A (x-axis) varied while the other 
     dimension fixed to nominal radius

SEMI
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Horn Current IMPORTANT
- 1σ shift = 1% (3kA): simultaneous change to all 3 horns
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Horn Current IMPORTANT
- 1σ shift = 1% (3kA): simultaneous change to all 3 horns
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Horn Current IMPORTANT
- 1σ shift = 1% (3kA): simultaneous change to all 3 horns
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Horn Current → Comparison to Nov17 systematics

Sept21: 
1σ shift = 3kA

Nov17: 
1σ shift = 2.93kA

IMPORTANT
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Decay Pipe 3 Segment Bowing X SEMI

- 1σ shift = 2.5cm: decay pipe segmented into 3 equal pieces; the central piece is transverse shifted by tolerance 
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SEMI

- 1σ shift = 2.5cm: decay pipe segmented into 3 equal pieces; the central piece is transverse shifted by tolerance 

Decay Pipe 3 Segment Bowing X
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SEMI

- 1σ shift = 2.5cm: decay pipe segmented into 3 equal pieces; the central piece is transverse shifted by tolerance 

Decay Pipe 3 Segment Bowing X
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NEGLIGIBLE
- 1σ shift = 0.5 mm

Horn A Displace Transverse Y
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NEGLIGIBLE
- 1σ shift = 0.5 mm

Horn A Displace Transverse Y
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Horn A Displace Transverse X → comparison to Nov17 systs
IMPORTANT

Sept 21: 1σ = 0.5mm

Nov17 1σ = 0.5mm
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Proton Beam Transverse X IMPORTANT
- 1 σ shift = 0.5 mm (updated from 4.5 mm in TDR)
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Proton Beam Transverse X IMPORTANT
- 1 σ shift = 0.5 mm (updated from 4.5 mm in TDR)
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Proton Beam Transverse X IMPORTANT
- 1 σ shift = 0.5 mm (updated from 4.5 mm in TDR)
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Target Upstream Degredation IMPORTANT

Extreme sensitivity 
reduction + 
bias when using
 EnuReco as analysis 
variable

No sensitivity reduction 
when using EnuReco as 
analysis variable

- 1σ shift = 5 mm loss: assume complete loss of target on upstream end 
(a shorter target by dz shifted downstream by the loss dz)
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Horn A Tilt Transverse X IMPORTANT
- 1σ shift = 0.5 mm
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Horn A Tilt Transverse X IMPORTANT
- 1σ shift = 0.5 mm
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Horn A Tilt Transverse X IMPORTANT
- 1σ shift = 0.5 mm
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Horn C Eccentricity X Induced Bfield IMPORTANT
- 1σ shift = 0.07 mm: NuMi Horn 2 tolerance assumed 
(off axis deformation of inner conductor)

Bias when EnuReco 
is used (not present when 
Etrue is used)

● PRISM prediction works well, but it is not a 
perfect match → mismatch comes from smearing 
+ efficiency correction (perfect match for E

true
) 
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Horn C Eccentricity X Induced Bfield IMPORTANT
- 1σ shift = 0.07 mm: NuMi Horn 2 tolerance assumed 
(off axis deformation of inner conductor)

Bias when EnuReco 
is used (not present when 
Etrue is used)

● PRISM prediction works well, but it is not a 
perfect match → mismatch comes from smearing 
+ efficiency correction (perfect match for E

true
) 

matches Asimov data better 
than nominal PRISM prediction
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Horn C Eccentricity X Induced Bfield – perfect PRISM match

● PRISM mismatch comes from smearing + efficiency correction (perfect match for E
true

) 
→ disentangle FD + ND smearing: no ND smearing (work with Etrue in ND) 

mismatch comes from ND 
smearing + efficiency correction 

No bias with 

PRISM perfect 
match

● There is no additional bias when PRISM prediction results in a perfect data match → sensitivity is 
still significantly reduced due to this focusing parameter 
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Horn C Displace Transverse X IMPORTANT
- 1σ shift = 0.5 mm
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Horn C Displace Transverse X IMPORTANT
- 1σ shift = 0.5 mm
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IMPORTANTHorn C Displace Transverse X

- 1σ shift = 0.5 mm
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Horn B Displace Transverse X IMPORTANT
- 1σ shift = 0.5 mm
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Horn B Displace Transverse X IMPORTANT
- 1σ shift = 0.5 mm
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Horn B Displace Transverse X IMPORTANT
- 1σ shift = 0.5 mm
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Horn Water Layer Thickness
IMPORTANT

- 1σ shift = 0.5 mm: nominal = 1mm; simultaneous change to all 3 horns- 1σ shift = 0.5 mm: nominal = 1mm; simultaneous change to all 3 horns
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IMPORTANT
- 1σ shift = 0.5 mm: nominal = 1mm; simultaneous change to all 3 horns

Horn Water Layer Thickness
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IMPORTANT
- 1σ shift = 0.5 mm: nominal = 1mm; simultaneous change to all 3 horns

Horn Water Layer Thickness
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Horn Water Layer Thickness
IMPORTANT

- 1σ shift = 0.5 mm: nominal = 1mm; simultaneous change to all 3 horns- 1σ shift = 0.5 mm: nominal = 1mm; simultaneous change to all 3 horns
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IMPORTANT
- 1σ shift = 0.5 mm: nominal = 1mm; simultaneous change to all 3 horns

Horn Water Layer Thickness
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IMPORTANT
- 1σ shift = 0.5 mm: nominal = 1mm; simultaneous change to all 3 horns

Horn Water Layer Thickness



77

Horn A Ellipticity X Induced Bfield SEMI
- 1σ shift = 0.120 mm: NuMi Horn 1 tolerance assumed 
(eliptical deformation of inner conductor)
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Horn A Ellipticity X Induced Bfield SEMI
- 1σ shift = 0.120 mm: NuMi Horn 1 tolerance assumed 
(eliptical deformation of inner conductor)
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Horn A Ellipticity X Induced Bfield SEMI
- 1σ shift = 0.120 mm: NuMi Horn 1 tolerance assumed 
(eliptical deformation of inner conductor)
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Proton Beam Radius SEMI

- 1σ shift = 10% (0.27 mm): updated from 1% in TDR
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Proton Beam Radius SEMI

- 1σ shift = 10% (0.27 mm): updated from 1% in TDR
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Proton Beam Radius SEMI

- 1σ shift = 10% (0.27 mm): updated from 1% in TDR
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