
CRT Integration to DUNE 
DAQ for ProtoDUNE

Matt Murphy
29 February 2024



USB 13 USB 14
USB 3

USB 22

32 modules arranged into 8 super-modules and 4 individual USB daisy chains
Each module has one PMT with 64 channels, each reading out single scintillator strip



Running the backend

To start the CRT taking data, we invoke a backend process (compiled as a cc code using 
a makefile) such as startallboards.cc, which performs several operations:

- Starts the USB readout processes (4 in the case of the protoDUNE CRT), so data 
and controls will flow along the daisy-chain of PMT boards

- Loads configuration settings for each pmt board from a provided fcl file (example 
on next slide)

- configure and initialize all the pmt boards (takes baseline data, applies calibration, 
threshold and trigger settings)

- Calculates the baseline from data taken above and store them in a text file (used 
by the readout processor in DUNE DAQ)

- Starts taking data and store data into binary files (one per USB)

There is a parallel stopallboards.cc to shut down the readout and stop the run (and 
optionally provide various statistics and debugging plots)

https://github.com/SBNSoftware/sbndaq-artdaq/blob/develop/sbndaq-artdaq/Generators/ICARUS/BottomInterface/Backend_DAQ/DAQ_CPP_v1/startallboards.cc


fcl configuration file example

USB #

PMT serial #
(not used)

PMT board #

HV setting

DAC threshold

Use MAROC2 gain constants?

Gate setting

Pipe delay Trigger mode

Force trigger? Not used
MAROC2 gain constants (x64)



Timing
- Each board receives a 62.5 MHz clock signal which increments a 32-bit counter 
on each of the board - these values are reported with each hit as two separate 16 
bits words
- Each board also receives a sync signal which resets the counter to 0 at a fixed 
interval - this is going to be provided by the DUNE timing board. We want to have 
the sync at fixed intervals >7s (sync with the timing board). We use a dual timer to 
veto all but every nth pulse, so the sync can be delivered every n seconds with n > 
7 s
-The USB readout additionally injects in the data stream a packet with the time 
since UNIX epoch, in seconds (so-called t-packet)

Procedure to set the run start time:
1. Start the sync based on a global run start signal
2. Wait until we read the first hit where we have a UNIX time packet
3. The run start time is then: UNIX time - 32-bit timestamp - cable delays
From this point we have a consistent n-second sync that we can use to construct a 
full 64 bits timestamp



Reading the backend binary files
While the backend is running, the program CRTInterface watches the binary files, 
and the FillBuffer function returns, one at a time, CRT hits formatted as follows:

 0                  1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Magic number | Count of hits |         Module number         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   (Zero: space left for upper bits of global timestamp)       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   (Zero: space left for lower bits of global timestamp)       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               62.5 MHz counter time stamp                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                 .          hits               .               |
|                 .            .                .               |

 DAQ Header
 0                   1                   2                   3                   4                   5                   6        
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
+---------------------------------------------------------------------------------------------------------------------------------+
|version = 0| det_id = 4|   crate_id = 0    |slot_id|stream_id =USB#| reserved  |       seq_id = 0      |    block_length = 0     |
|           |           |                   |  =0   | (3,13,14,22)  |           |                       |                         |
+---------------------------------------------------------------------------------------------------------------------------------+
|                                        64-bit timestamp (in 16-ns ticks from UNIX epoch)                                        |
+---------------------------------------------------------------------------------------------------------------------------------+

Each hit consists of:
Magic number char (= ‘H’)
Channel number uint8_t (= 0-63)
ADC value int16_t

To create a fixed-size format, this 
output is padded with zeros to the 
maximum possible size 
(64 channels = 288 bytes)

https://github.com/SBNSoftware/sbndaq-artdaq/blob/develop/sbndaq-artdaq/Generators/ICARUS/BottomInterface/CRTInterface.cc


Triggering

Each board sends a signal to the CTB for each hit it reads out; 

These signals have all been verified and are currently active when the CRT runs.

The signal is formed as an OR of the 64 channels for each of the modules.

We have 32 of those signals used as input in the CTB.



Current progress on DUNE DAQ integration
Data format: CRTFixedSizeFrame.hpp*
Type adapter and frame processor 

Added a fake readout mode in fdreadoutmodules (1 2)

This mode is able to take a test file generated by CRTInterface and successfully 
run the DAQ to produce an HDF5 output file.
A rough pass at a decoder seems to indicate that the HDF5 file contains the data 
in the format expected. However it seems to start reading from somewhere in the 
middle of the test file - maybe this is expected with the fake data reader mode?

All of my changes have been committed to a new mmatt15/crt branch in their 
respective repositories

*Initially I attempted both this fixed-sized mode as well as a variable-sized frame based on the 
PACMAN format - the fixed-size model has been easier for me to work with, and if it proves 
acceptable I can remove the other method and simplify the naming

https://github.com/DUNE-DAQ/fddetdataformats/blob/mmatt15/crt/include/fddetdataformats/CRTFixedSizeFrame.hpp
https://github.com/DUNE-DAQ/fdreadoutlibs/blob/mmatt15/crt/include/fdreadoutlibs/CRTFixedSizeTypeAdapter.hpp
https://github.com/DUNE-DAQ/fdreadoutlibs/blob/mmatt15/crt/src/crt/CRTFixedSizeFrameProcessor.cpp
https://github.com/DUNE-DAQ/fdreadoutmodules/blob/mmatt15/crt/plugins/FDDataLinkHandler.cpp
https://github.com/DUNE-DAQ/fdreadoutmodules/blob/mmatt15/crt/plugins/FDFakeCardReader.cpp
https://github.com/DUNE-DAQ/rawdatautils/blob/mmatt15/crt/scripts/crt_decoder.py


Configuration files
crt_dro_map.json   daqconf.json



To-Do: DAQ

-DUNE DAQ application module to start and stop the backend processes and run 
the CRTInterface

-Timestamp construction: could be implemented into the CRTInterface, or as a 
separate piece of the application module

-Run control and configuration

-Cleanup of backend binary files from the CRT computer



To-Do: Monitoring

Our initial idea is to use Grafana to provide monitoring of a few metrics:

-Data rate and average ADC value of each channel

-Timestamp checks (make sure each board receives the sync and that timestamps 
agree across all modules)


