<u>``</u>	Lawrence Berkeley N
BERKELEY LAB	Nonconformance]
LBNL W	indchill Document Template

Rev

Α

Date: 11/8/	23 QA Doc #:	MQXFA-NCR-0429	
Originator: J. Doyle		Company:	
Phone:	510-495-2157	PO Number:	
E-mail:	jadoyle@lbl.gov	Other:	
Part Name:	MQXFA Test Assy	Quantity Impacted:	1
Part Number:	SU-1011-0518G	Serial No. (if applicable):	MQXFA12
Additional			
Notes:			

ITEM NO.	NONCONFORMING CHARACTERISTIC	DISPOSITION		REINSPECTION		
1	Series of electrical failures starting during final (Step 6) EQC hipot testing and continuing through follow-up investigation. Refer to attached slides for chronology of non- conforming findings.	□ ACCEPT AS-IS □ REWORK ⊠ REJECT MQXFA12 to be disassembled for further inspection and investigation. Coils 136 and 137 to be sent back to FNAL. Validated, undamaged non-coil structural components to be reused for MQXFA14 build.	U YES NO			
2		ACCEPT AS-IS REWORK REJECT	YES			

Use continuation sheet if necessary. Attach red-lines, photos as necessary

APPROVAL:		CONCWRREN	IC ₽ ?		CONCURRANCE:		CONCURRANCE:
1 All	2/2/27	Three	They	2/24/2			
Technical Lead	Date	QA Rep.	0	Date	Stakeholder/CAM	Date	PM (High Risk NCRs Only))
Indicate all follow-o	n or related	processes:	NO	NE CAF	ECN HOLD		
Is it a 'Suspect/Cour	nterfeit' Iten	n? 🗌 YES*	NO NO				

*Report to OCA (Office of Contractor Assurance) and follow PUB-3111 to dispose material

MQXFA12 Hipot Weakness Investigation

Dan Cheng Josh Herrera, Bob Memmo, and more

Nov 16, 2022

US HL-LHC

Recent MQXFA12 Chronology

- Magnet Preload Complete: 10/13/22
- Magnet EQC started 10/18/22
 - PH, SG connectors, and CVTs were already mounted to LE and RE skirts, etc.
 - Only missing connector block was FVTs from Splice box
 - All tests passed successfully 10/24/22
- Splice box assembly started 10/25/22
 - FVT connectors were then added to LE skirt; completed 10/27/22 (*This is the only configuration change from earlier successful EQC*)
- Magnetic measurements & fiducializations completed 11/6/22
- MQXFA12 Final EQC started 11/7/22

MQXFA12 EQC Chronology

- Day 1 (Mon 11/7):
 - EQC hipot initially noticed higher than normal leakage current (coil to ground)
 - Hipot failed Coil to Structure, 300 V
 - Action: CLIQ lead moved and protected
 - Hipot failed Coil to Structure, 900 V
 - Action: Noticed FVT wires were wrong, Not Axon HH2619
 - Conclusion and Actions taken:
 - Replace FVT wires with proper Axon HH2619

MQXFA12 EQC Chronology (2)

• Day 2 (Tue 11/8):

- Hipot failed 3.65 kV
 - Video captured simultaneous flashes on pins on LE SG connectors 4-3, 4-6 (Shells/Coils, respectively)
 - Disconnected SG harness from RE end (Coils, Shell 7)
- Hipot failed 3.67 kV
 - Video captured flash on a single SG pin on 4-3 (shell)
 - Noticed Shell gauge with "low wire", attempted to move away from shell; reconnected RE SG harness
 - "Ground to ground" is a strange breakdown...
- Hipot failed at 3.51 kV
 - Video captured simultaneous flash on single pins of 4-3 and 4-6
 - Disassembled SG connector block on LE
 - Bundled 4-1 to 4-3 connectors (shells) and Coils & rods (4-4 to 4-7) separately and protected with Kapton to skirt
- Hipot passed 3.68 kV
 - FVT connectors (with Axon wires) were not connected to LE skirt yet
- Conclusion and Actions taken:
 - Protection of SG to skirts with Kapton is beneficial, Kapton layer added to LE top skirt

MQXFA12 EQC Chronology (2)

Initial theory of path

MQXFA12 EQC Hipot Diagnostics

MQXFA12 EQC Chronology (3)

• Day 3 (Wed 11/9):

- Hipot reached 3.68 kV, failed ~5 sec into hold
 - LE Video captured flashes on pins SG pins still (4-3 to 4-6)
 - RE video also captured flash reflection from Q2 inside bore
 - FVT connectors still not connected to LE skirt yet
- Conclusion and Actions taken:
 - Remove SG connectors from coil from RE skirts
 - Re-soldered Shell 4RT gauge lead to add relief

MQXFA12 EQC Chronology (3)

Day 3 (Wed 11/9):

00<00

Drag up to adjust scrubbing rat

13

AI II

MQXFA12 EQC Chronology (4)

- Day 4 (Thursday 11/10):
 - Hipot coil to structure test failed at 3.45 kV
 - Did not see flash; heard "near FVT, or through bore"
 - Had disconnected RE SG connector block from skirts
 - Hipot test failed with high leak @350 V @39.8 µA
 - Hipot test failed with high leak @520 V 39.0 µA
- Diagnostics performed
 - Coil to Structure Open
 - Coil to Pole Diagnostics (11 segments, SG on Segment 10 from LE)
 - Q1: Open
 - Q2: 220 kΩ (Segment 10)
 - Q3: 40+ MΩ
 - Q4: 950+ kΩ (Segments 10, 9)
 - SG wires connected in groups (T, Z, per station)
 - All gauges open to coil

MQXFA12 EQC Chronology (4)

Day 4 (Thursday 11/10):

M	001-001 CW	Breakdown Settinøs 3680V	Results 3.45kV	
• HI	-Limit:	10.0uA	>5.000mA	
Ti I-I	ime: Maximum:	30.0s	344.3s >5.000mA	
	5	ស៊	Ġ	
MOO	1-001	Ramp-HI		
MOO DCW	1-001	Ramp-HI Settings	Results	
M00 DCW Volta	1-001 .se:	Ramp-HI Settings 3680V	Results 0.52kV	
M00 DCW Volta HI-Lii	1-001 øe: mit:	Ramp-HI Settings 3680V 10.0uA	Results 0.52kV 39.0uA	
M00 DCW Volta HI-Lii Time: I-Max	1-001 se: mit: ::	Ramp-HI Settings 3680V 10.0uA 30.0s	Results 0.52kV 39.0uA 52.1s 39.0uA	

3680V	0.35kV
10.0uA	39.8uA
30.0s	34.5s 39.8uA
ជា	Ŀ
0	IN MARKEN
	The second
	30.0s

MQXFA12 EQC Chronology (5)

- Day 5 (Monday 11/14):
 - Coil SG connectors still not on RE skirts
 - Coil-Pole Diagnostics (11 segments, SG on Segment 10 from LE)
 - Q1: Open
 - Q2: 238 kΩ (Segment 10)
 - Q3: 35+ MΩ (Segments 11, 10)
 - Q4: 66 kΩ (Segment 10,9)
 - Pole-Structure continuity
 - All coil poles open to Structure
 - Coil-Structure continuity is open
 - Have not performed any operations since before the weekend

MQXFA12 EQC Chronology (5)

Day 5 (Monday 11/14):

Q4

MQXFA12 EQC Chronology (6)

Day 6 (Tuesday 11/15):

- Coil-Pole Diagnostics (11 segments, SG on Segment 10 from LE)
 - Q1: Open
 - Q2: 238 kΩ (Segment 10)
 - Q3: 35-45 MΩ (Segments 11, 10)
 - Q4: 68 kΩ (Segment 10, 9)

Present Continuity Checks

Pair	Status	Notes
1. Coil to Structure	Open	
2. Coil to Pole	Q2, Q4 weak	Passed 100V acceptance initially
3. SG to Pole	Open	
4. SG to Coil	Open	

Notes

Coils and SG all passed earlier (post-preload)

- May still have had a weak condition that eventually broke down: coil-pole + coil SG-ground
- Unknown: Coil-Pole integrity above 100 V
- Coil SG was installed by a new technician
 - Also reused some wiring from MQXFA06
- Shell 4RT gauge had a "close" wire to shell
 - After repair initially passed

MQXFA12 Coils SG installation (several)

MQXFA12 EQC Hipot Diagnostics