
Physics validation of changes to PDFastSimPAR
And what comes next
Marc Paterno
March 5, 2024
1/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR



Prologue
I have been working on improving the speed of the PDFastSimPARmodule. This
module does a fast simulation of propagation of the photons created from
SimEnergyDeposits. It uses the “Semi-Analytical model”, which stores the
visibilities of each optical channel with respect to each optical voxel in the TPC
volume, to avoid propagating single photons using Geant.

I have presented performance improvements possible by replacing fast_acosd with
other approximate calculations of cos−1(𝑥). I compared:

std::acos(double) (considerably slower, but closest to exact calculation)
fast_acos (what PDFastSimPAR uses now)
hastings_acos (44% faster than fast_acos, identical output)
hastings_acos_4 (same speed as hastings_acos, better approximation)
hastings_acs_5 (33% faster than fast_acos, much better approximation)
Note that these percentage speed-ups are for the trigonometric function, not the whole
PDFastSimPARmodule.

2/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR



Today’s goal
This time, I will show comparisons between the output of PDFastSimPAR using the
different algorithms.
Goal: to decide which cos−1(𝑥) algorithm is most appropriate to use in this context.
I will fininsh with a description of my next plans.

3/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR



sim::SimPhotonsLite
The output of PDFastSimPAR, in the configurations of the workflows used by DUNE,
consists of std::vector<sim::SimPhotonsLite> (henceforth SPL) objects.
Each element in the vector represents data for a channel.
The data for each channel are a channel ID and a record of a time series of
measurements.
The series of measurements for a channel is recorded as an std::map<int,int>.

The first int (the key) represents a time, measured in ticks.
the second int (the value) represents a count of photons observed at that time.

We will revisit this data structure later in the talk.

4/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR



Comparison of results
To determine the effect of using the different algorithms for cos−1(𝑥), I compare the
results from using the “exact” result of std::acos to the results from using the
different fast approximations.
In order not to confound the comparison with the effect of other complicated
algorithms, I have looked at direct displays and comparisons of (distributions of) the
PDFastSimPAR output.
I will present several different comparisons.
Some additional detail is available online.

5/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR

https://rpubs.com/paterno/pdfastsimpar_2_of_n


Correlation in number of photons in each channel in each event

3000

6000

9000

3000 6000 9000
N photons (using std::acos)

N
 p

ho
to

ns
 (

us
in

g 
fa

st
_a

co
s)

Using the other algorithms, the
correlation is identical (hastings_acos)
or very slightly different
(hastings_acos_4, hastings_acos_5).
This is a very coarse comparison — the
ancillary document has some more
detail.
The distribution of photon counts per
measurement varies little by changing
which cos−1(𝑥) algorithm is used.

6/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR

https://rpubs.com/paterno/pdfastsimpar_2_of_n
https://rpubs.com/paterno/pdfastsimpar_2_of_n
https://rpubs.com/paterno/pdfastsimpar_2_of_n


Deviation from exact correlation, vs photon count using std::acosd

−40

0

40

3000 6000 9000
acosd

or
ig

−40

0

40

3000 6000 9000
acosd

ac
os

4

−40

0

40

3000 6000 9000
acosd

ac
os

5

7/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR



Detailed look at the busiest signal (event 6, channel 108, 600 tick span)

orig

acosd

acos5

acos4

2675000 2675200 2675400

30
100
300

1000
3000

30
100
300

1000
3000

30
100
300

1000
3000

30
100
300

1000
3000

Time (ticks)

N
um

be
r 

of
 p

ho
to

ns

8/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR



How to decide which is best?
Which of the trigonometic algorithms used makes very little difference to the output
of PDFastSimPAR.
Since the original (and least accurate) approximation has been adequate, it does not
seem that a more accurate approximation is required.
Both hastings_acos and hastings_acos_4 have identical speed, and are about 44%
faster than the current fast_acos.
It seems to me that one of these two would be the best choice.
Either will save about 4 seconds per event.

9/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR



Next step
My next step in optimization is the parallelization of the processing.
The first part of this is creating a data structure that is efficient for parallel processing.
The current data structure is far from being efficient.
The main issue is terrible locality of reference, leading to terrible cache usage.
The secondary issue is the amount of wasted memory.

10/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR



What does a std::map look like in memory?

node

left right parent color key value

node

left right parent color key value

node

left right parent color key value

std::map<int, int>

begin root size = 3

color = red/black (char)
key = tick (int)
value = nphotons (int)

For SPL, the size of each
node is 40 bytes
(including padding); of
this 8 bytes are the data
key and value (80% of the
space is overhead).
The nodes are distributed
all around memory.
The typical map (channel)
has about 3000 such
nodes.
Each vector<SPL>
requires about 5×105 news
and deletes.

11/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR



What would be a more efficient data structure?
This depends upon the access pattern(s) of code using the data.
If the common pattern is iteration through the channel, then replacing
std::map<int,int> with std::vector<std::pair<int,int>> would be more
efficient.
Possibly still better is two parallel vectors:

std::vector<int> tick;
std::vector<int> n_photons;

I propose to survey the code consuming SPLs to determine which access patterns are
observed.
It will be necessary to measure the results of any changes, to see whether relevant
performance improvement is observed.
If such a change is worthwhile, deployment will require dealing properly with schema
evolution, to retain usefulness of existing data files.

12/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR



Thanks for your attention

Questions?

13/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR



Extras: Number of measurements per channel (original algorithm)

0

50

100

150

1000 3000 10000
Number of measurements per channel

co
un

t

14/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR


