S | Office of

Fermilab Y Science

Physics validation of changes to PDFastSimPAR

And what comes next
Marc Paterno
March 5, 2024 £& Fermilab

1/14 March 5, 2024 Mare Paterno | Physics validation of changes to PDFastSimPAR

Prologue

@ I have been working on improving the speed of the PDFastSimPAR module. This
module does a fast simulation of propagation of the photons created from
SimEnergyDeposits. It uses the “Semi-Analytical model”, which stores the
visibilities of each optical channel with respect to each optical voxel in the TPC
volume, to avoid propagating single photons using Geant.

o I have presented performance improvements possible by replacing fast_acosd with
other approximate calculations of cos~!(x). I compared:

std: :acos(double) (considerably slower, but closest to exact calculation)

fast_acos (what PDFastSimPAR uses now)

hastings_acos (44% faster than fast_acos, identical output)

hastings_acos_4 (same speed as hastings_acos, better approximation)
hastings_acs_5 (33% faster than fast_acos, much better approximation)

Note that these percentage speed-ups are for the trigonometric function, not the whole
PDFastSimPAR module.

£= Fermilab

2/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR

Today’s goal

@ This time, I will show comparisons between the output of PDFastSimPAR using the
different algorithms.

@ Goal: to decide which cos™!(x) algorithm is most appropriate to use in this context.

o I will fininsh with a description of my next plans.

£= Fermilab

3/14 March 5, 2024 Mare Paterno | Physics validation of changes to PDFastSimPAR

sim: :SimPhotonsLite

@ The output of PDFastSimPAR, in the configurations of the workflows used by DUNE,
consists of std: :vector<sim::SimPhotonsLite> (henceforth SPL) objects.

@ Each element in the vector represents data for a channel.

@ The data for each channel are a channel ID and a record of a time series of
measurements.

@ The series of measurements for a channel is recorded as an std: :map<int,int>.
o The first int (the key) represents a time, measured in ticks.
o the second int (the value) represents a count of photons observed at that time.

@ We will revisit this data structure later in the talk.

£= Fermilab

4/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR

Comparison of results

@ To determine the effect of using the different algorithms for cos~!(x), I compare the
results from using the “exact” result of std: : acos to the results from using the
different fast approximations.

@ In order not to confound the comparison with the effect of other complicated
algorithms, I have looked at direct displays and comparisons of (distributions of) the
PDFastSimPAR output.

o I will present several different comparisons.

@ Some additional detail is available online.

£= Fermilab

5/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR

https://rpubs.com/paterno/pdfastsimpar_2_of_n

Correlation in number of photons in each channel in each event

° @ Using the other algorithms, the
correlation is identical (hastings_acos)
or very slightly different
(hastings_acos_4, hastings_acos_5).

@ @ This is a very coarse comparison — the
° ancillary document has some more
detail.
@ The distribution of photon counts per
measurement varies little by changing
which cos™!(x) algorithm is used.

9000

N photons (using fast_acos)
w [}
o o
o o
o o

3000 6000 9000
N photons (using std::acos)
£& Fermilab

6/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR

https://rpubs.com/paterno/pdfastsimpar_2_of_n
https://rpubs.com/paterno/pdfastsimpar_2_of_n
https://rpubs.com/paterno/pdfastsimpar_2_of_n

Deviation from exact correlation, vs photon count using std: :acosd

40 e
e
(=2} e
= 0
o
-40
3000 6000 9000
acosd
40
<
& o
Q
3 o
-40
3000 6000 9000
acosd
40
2
8 0 . ®
©
-40 ° o
3000 6000 9000
acosd
Je H
3¢ Fermilab
7/14 March 5, 2024

Mare Paterno | Physics validation of changes to PDFastSimPAR

Detailed look at the busiest signal (event 6, channel 108, 600 tick span)

3000 -
1000 -
300 -
100 -
30
3000 -

& 1000~ ! \
300 -
100 -
30
3000 -
1000 -
300 -
100 -
30

3000 -
1000 -
300 -
100 -
30 -

2675000 2675200 2675400
Time (ticks)

Number of photon:

£& Fermilab

8/14 March 5, 2024 Mare Paterno | Physics validation of changes to PDFastSimPAR

How to decide which is best?

@ Which of the trigonometic algorithms used makes very little difference to the output
of PDFastSimPAR.

@ Since the original (and least accurate) approximation has been adequate, it does not
seem that a more accurate approximation is required.

@ Both hastings_acos and hastings_acos_4 have identical speed, and are about 44%
faster than the current fast_acos.

o It seems to me that one of these two would be the best choice.

e Either will save about 4 seconds per event.

£= Fermilab

9/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR

Next step

@ My next step in optimization is the parallelization of the processing.

@ The first part of this is creating a data structure that is efficient for parallel processing.
@ The current data structure is far from being efficient.

@ The main issue is terrible locality of reference, leading to terrible cache usage.

@ The secondary issue is the amount of wasted memory.

£= Fermilab

10/14 March 5, 2024 Marc Paterno | Physics validation of changes to PDFastSimPAR

What does a std: :map look like in memory?

std::mapsint, int>

@ For SPL, the size of each
node is 40 bytes
(including padding); of
this 8 bytes are the data
key and value (80% of the

() space is overhead).

/ \ @ The nodes are distributed

, . ‘ all around memory.
. o | b [e] ‘ @ The typical map (channel)
has about 3000 such

nodes.
@ color = red/black (char) e Each vector<SPL>
@ key = tick (int) requires about 5 X 10° news
@ value = nphotons (int) and deletes.

£= Fermilab

11/14 March 5, 2024 Mare Paterno | Physics validation of changes to PDFastSimPAR

What would be a more efficient data structure?

@ This depends upon the access pattern(s) of code using the data.

@ [fthe common pattern is iteration through the channel, then replacing
std: :map<int,int> with std: :vector<std: :pair<int, int>> would be more
efficient.

@ Possibly still better is two parallel vectors:

std: :vector<int> tick;
std: :vector<int> n_photons;

@ I propose to survey the code consuming SPLs to determine which access patterns are
observed.
o It will be necessary to measure the results of any changes, to see whether relevant
performance improvement is observed.
@ Ifsuch a change is worthwhile, deployment will require dealing properly with schema
evolution, to retain usefulness of existing data files.
£& Fermilab

12/14 March 5, 2024 Mare Paterno | Physics validation of changes to PDFastSimPAR

Thanks for your attention

Questions?

£& Fermilab

13/14 March 5, 2024 Mare Paterno | Physics validation of changes to PDFastSimPAR

Extras: Number of measurements per channel (original algorithm)

150
< 100
>
o
o
50
0 — — —
1000 3000 10000
Number of measurements per channel
14/14 March 5, 2024

JE H
3¢ Fermilab
Mare Paterno | Physics validation of changes to PDFastSimPAR

