

Trigger and DAQ challenges at the LHC

Christian Herwig July 22, 2024

Plan

Yesterday afternoon: Concepts

- Introduction and physics goals of the LHC Experiments
- The role of the trigger and DAQ systems
- DAQ concepts: simple toy model → complex systems
- This morning: Details and Implementations
 - Trigger concepts: from hardware to architecting a system
 - The challenge of high luminosity, and the upgrades
 - ATLAS, CMS hardware triggers, and their evolution
 - Software triggers, and new analysis paradigms
 - Wrap up

Designing a rapid-reconstruction system

Trigger MUST process new events at the experimental frequency — quickly!

@LHC this is 40 MHz, 1/(25 nanosec)

If FPGAs are the atomic units, how to architect a complete system?

Designing a rapid-reconstruction system

Trigger systems rely on **pipelines** to perform *complicated reconstruction* tasks while handling a stream of *continuous inputs*.

They enable systems with *long latency*, *short initiation interval*.

??? ???

A real life example

Trigger systems rely on **pipelines** to perform *complicated reconstruction* tasks while handling a stream of *continuous inputs*.

They enable systems with *long latency*, *short initiation interval*.

Example: laundry in my apartment building:

1 washer (runs 30min) and 1 dryer (runs 1hr).

A real life example

Trigger systems rely on **pipelines** to perform *complicated reconstruction* tasks while handling a stream of *continuous inputs*.

They enable systems with long latency, short initiation interval.

Example: laundry in my apartment building:

1 washer (runs 30min) and 1 dryer (runs 1hr).

What are the ii, latency of the washer? The dryer? The entire system?

A real life example

Trigger systems rely on **pipelines** to perform *complicated reconstruction* tasks while handling a stream of *continuous inputs*.

They enable systems with *long latency*, *short initiation interval*.

Example: laundry in my apartment building:

1 washer (runs 30min) and 1 dryer (runs 1hr).

What are the ii, latency of the washer? The dryer? The entire system?

Trigger systems rely on **pipelines** to perform *complicated reconstruction* tasks while handling a stream of *continuous inputs*.

They enable systems with long latency, short initiation interval.

Trigger systems rely on **pipelines** to perform *complicated reconstruction* tasks while handling a stream of *continuous inputs*.

They enable systems with long latency, short initiation interval.

The block is still processing when a new event arrives!

Trigger systems rely on **pipelines** to perform *complicated reconstruction* tasks while handling a stream of *continuous inputs*.

They enable systems with long latency, short initiation interval.

Modular logic can process many events at once

(and again, intermediate buffers ease synchronization)

Trigger systems rely on **pipelines** to perform *complicated reconstruction* tasks while handling a stream of *continuous inputs*.

They enable systems with long latency, short initiation interval.

Sometimes this is inconvenient or impossible → parallel processors

(More complex building blocks, at the expense of more resources)

Regional processing

Particle reconstruction is an inherently local task

→ process parallel regions

Regional processing

Particle reconstruction is an inherently local task
→ process parallel regions

No "event building" necessary!

Regional processing

Particle reconstruction is an inherently local task
→ process parallel regions

Caveat: some data-sharing always needed. How to deal with overlaps?

Regional processing

Particle reconstruction is an inherently local task
→ process parallel regions

Caveat: some data-sharing always needed. How to deal with overlaps?

Regional processing

Particle reconstruction is an inherently local task \rightarrow process parallel regions

Particle jets occupy 1/2 detector!

E.g. a decaying top quark with large Lorentz boost

b-jet

W

Plan

Yesterday afternoon: Concepts

- Introduction and physics goals of the LHC Experiments
- The role of the trigger and DAQ systems
- DAQ concepts: simple toy model → complex systems
- This morning: Details and Implementations
 - Trigger concepts: from hardware to architecting a system
 - The challenge of high luminosity, and the upgrades
 - ATLAS, CMS hardware triggers, and their evolution
 - Software triggers, and new analysis paradigms
 - Wrap up

Towards the high-luminosity era

C. Herwig — Fermilab Users Meeting

Basic challenge of High-Luminosity

Run / Event / LS: 283171 / 142530805 / 254

Data recorded: 2016-Oct-14 09:56:16.733952 GMT

CMS Experiment at the LHC, CERN

Must disentangle decay products of 200 overlapping collisions.

Typical collision at the LHC start (Pileup=2)

Charged particle tracks C. Herwig — Fermilab Users Meeting High-lumi test data: Pileup~100 in 2016

Interaction vertices

Jun 28, 2023

68

Basic challenge of High-Luminosity

C. Herwig — Fermilab Users Meeting

Sub-engines for

- Electrons and photons
- Hadronic jets (R=0.4, quark/gluon)
- Large-R jets (hadronic W/Z/h)

Sub-engines for

- Electrons and photons
- Hadronic jets (R=0.4, quark/gluon)
- Large-R jets (hadronic W/Z/h)

"Ghost-busting" muons reconstructed in two overlapping detector segments

Sub-engines for

- Electrons and photons
- Hadronic jets (R=0.4, quark/gluon)
- Large-R jets (hadronic W/Z/h)

"Ghost-busting" muons reconstructed in two overlapping detector segments

Correlating multiple objects (e.g. m(μμ), dR(j,j), energy sums,...)

Sub-engines for

- Electrons and photons
- Hadronic jets (R=0.4, quark/gluon)
- Large-R jets (hadronic W/Z/h)

"Ghost-busting" muons reconstructed in two overlapping detector segments

^γ Correlating multiple objects (e.g. m(μμ), dR(j,j), energy sums,...)

Apply the dead time rules

Jul 23, 2024

C. Herwig

The CMS Trigger System

The CMS Trigger System

C. Herwig

The CMS Trigger System

ATLAS HW Calorimeter trigger

Original trigger design

Simple algorithms (sums, local maxima), that are quick to compute in hardware.

Figure 13: Elements used for the e/γ and

Jul 23, 2024

Improved granularity, thanks to new FEs, higher link speeds!

(c) gFEX

And a new generation of trigger hardware to match!

ATLAS HW Calorimeter trigger

More detailed information leads to improved efficiencies (at fixed rate)

CMS HW Muon "reconstruction"

Instead of reconstructing μp_T "on the fly", results of an algorithm can be pre-computed (offline) for all possible input values for **fast lookup**.

C. Herwig

CMS HW Muon "reconstruction"

Phase-1: Larger FPGAs, internal DRAM with 30b address space

30b LUT actually encodes a Neural Net ... more on that later!

Trigger-driven tracker design

Large-radius sensors drive p⊤ measurement (lever arm). Outer layers: 2 stacked sensors with 5cm strips "SS". Inner layers: strips (2.4cm) + macro-pixel (1.5mm) "PS".

Trigger-driven tracker design

 \boldsymbol{e}

SS

PS

Primary vertex

 $(p_{\mathrm{T}},\eta,\phi,d_{xy},d_z)$

Jun 28, 2023

Large-radius sensors drive p_T measurement (lever arm). Outer layers: 2 stacked sensors with 5cm strips "SS".

Inner layers: strips (2.4cm) + macro-pixel (1.5mm) "PS".

Double-layer strip modules provide local p_T measurement.

→ Intrinsic mechanism to filter hits from low-p_T tracks, allows high-p_T (2 GeV) track-finding in the trigger system!

Trigger-driven tracker design

The case for tra

C. Herwig

Jul 23, 2024

parisons (1) Proj**Edtacking in Hardwa**

- 2. Stub used to L tracklet
- 3. χ^2 calculated, incorrect stubs on genuine candidates
- Repeat until all stubs are added 4.

Beam spot + 2 layers form a proto-track.

May 7, 2014 dcap L1 Tracking

У

Page: 3/27

parisons (1) Proj**Tatacking in Hardwa**

Tracklet seed & search

- Stud used to L_____ tracklet
- 3. χ^2 calculated, incorrect stubs on genuine candidates
- Repeat until all stubs are added 4.

Tracking in Hardware (II)

Data-sharing is painful for innermost detectors.

Best to use large regions

 \rightarrow 9 ϕ slices

Tracking in Hardware (II)

Fundamentally new capabilities!

Particle

Programming an FPGA

"Firmware" specifies how the logic gates should be configured.
 Custom language (vhdl/verilog) for concurrent signals.
 Abstract logic → components → "place and route"

Since recently, can program in C with high level synthesis (HLS), significantly reducing barriers of time and expertise.

Aside: Machine learning on FPGAs

Machine Learning methods can unlock state-of-the-art performance. From particle identification to full event selection

Core of each NN "layer": an $N \rightarrow M$ matrix multiplication $y_i = \sigma(w_{ij}x_i + b_i)$

Non-linearity, e.g. M $\sigma(x_i)=\max(x_i,0)$ m

Matrix multiplication

Offlinermodelfollatomized torotriggen application (esg. smodel, size, precision) of a

Challenge: repeating calculation for all 100 particles / event! defined as:

C. Herwig

Level-1 Trigger Menu

Categories of trigger path occupying the largest rate for Run 2 CMS.

Level-1 trigger rates

Menus with different energy thresholds target different inst. luminosity. Ideally the rate of accepted events scales linearly with pileup.

Software Triggers

Aim for reconstruction as close as possible to offline Lower thresholds and reduces systematic biases for analysis

Software Triggers

Aim for reconstruction as close as possible to offline Lower thresholds and reduces systematic biases for analysis

Software Triggers

Aim for reconstruction as close as possible to offline Lower thresholds and reduces systematic biases for analysis

C. Herwig

SW trigger tracking at ATLAS

At ATLAS/CMS today, software trigger relies heavily on tracking. Offline tracking is computationally expensive, how to reduce?

ATLAS breaks task into "speed" and "precision" stages, within ROIs.

SW trigger tracking at ATLAS

At ATLAS/CMS today, software trigger relies heavily on tracking. Offline tracking is computationally expensive, how to reduce?

HLT accurately measures impact parameters, allows online b-tagging

SW trigger tracking at CMS

In Run 2, a multi-stage approach was used. Find "easy" tracks first, remove hits, and loosen validity window for the next stage.

SW trigger tracking at CMS

In Run 2, a multi-stage approach was used. Find "easy" tracks first, remove hits, and loosen validity window for the next stage.

C. Herwig

SW trigger tracking at CMS

For Run 3, much of the task is offloaded to GPUs. Hit unpacking, clustering, and "pixel track" formation Pixel tracks (3+ hits) seed a single-stage approach.

Jul 23, 2024

x

Y∱

Particle

FIOW

E/Gam

397.8 ms

CPU+GPU only

High-Level Trigger Menu

Example from CMS Run 2

HLT path	L1 thresholds [GeV]	HLT thresholds [GeV]	Rate [Hz]
Single muon	22	50	49
Single muon (isolated)	22	24	230
Double muons	—	37, 27	16
Double muons (isolated)	_	17, 8	32
Single electron (isolated)	30	32	180
Double electrons	25, 12	25, 25	16
Double electrons (isolated)	25, 12	23, 12	32
Single photon	30	200	16
Single photon (isolated),	30	110	16
barrel only			
Double photons	25, 12	30, 18	32
Single tau	120	180	16
Double taus	32	35, 35	49
Single jet	180	500	16
Single jet with substructure	180	400	32
Multijets with b-tagging	$H_{\rm T} > 320$	$H_{\rm T} > 330$	16
	jets > 70, 55, 40, 40	jets > 75,60,45,40	
Total transverse momentum	360	1 050	16
Missing transverse momentum	100	120	49

C. Herwig

Rate [MHz]

1

Legacy hardware trigger rate places limitations for key channels.

Requirements on p_T and displacement are not enough!

For Run 3, transitioned to completely software-based trigger.

For Run 3, transitioned to completely software-based trigger.

For Run 3, transitioned to completely software-based trigger.

Jul 23, 2024

C. Herwig

Event filter second pass (up to 4000 servers)

Wrapping up

- LHC trigger systems have continuously evolved to accommodate the changing conditions, detectors, and physics goals of the experiments
 - Rapidly improving technology plays a huge role
 - Faster links, larger chips, offering more compute with less power
- ATLAS, CMS, and LHCb have explored different strategies, sharing/ borrowing ideas at times to great effect!
- High luminosity presents a new challenge for all experiments to face.
 - Detectors are being built "around the trigger", to great effect!
- Thanks for your attention!