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QCD - is broad 

https://gdrqcd.in2p3.fr/working-group-2/

QCD is a rich theory, which 
is only partly understood. 

It describes wide ranging 
phenomena, from nuclear 
matter, to neutron stars to the 
properties of the early universe. 

These lectures will focus on 
a small window of QCD, that 
relevant for collider physics.  
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QCD has excellent resources 

I’ve extensively used these 
references. On nearly every slide!
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Or indeed even much of subset of QCD with 3 hours, so some decisions had 
to be made. 

I decided to focus on three topics I think are 


1) fundamental (and somewhat bespoke) to QCD

2) Important, in that its likely that a collider physicist will come into contact with 

the physics at some-point in their career. 

3) Sort of hang together as a coherent narrative! 

My hope is that these lectures serve as an introduction, and would help you to 
tackle more detailed topics covered in the bibles of QCD with confidence! 
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Outline of the lectures

The main questions Id like these lectures to address are as follows: 

1) What drives the differences between QCD and QED? 

2) How do we evaluate hadron structure? How can we predict scattering 
processes with initial state hadrons?

3) How can we understand QCD radiation patterns in final states at collider 
experiments?



WHAT DRIVES THE 
DIFFERENCES BETWEEN 
QCD AND QED?



A MINI OVERVIEW OF QCD FIELD THEORY 
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Fundamentals of QCD

QCD is a quantum field theory, which is described by a Lagrangian (density) 
with the following form ℒclassical + ℒgauge−fixing + ℒghost

The classical Lagrangian is obtained from the following terms

ℒclassical = −
1
4

GA
μνG

μν
A + ∑

flav

qa(iγμDμ − m)abqb

Where  denotes a spin-1/2 quark field and  is the field strength tensor 
constructed from the gluon field 

qa GA
μν

𝒜A
μ

GA
μν = ∂μ𝒜A

ν − ∂ν𝒜A
μ − gfABC𝒜A

ν𝒜A
μ
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QCD is an SU(3) gauge theory, which means that its constituents belong to 
non-trivial representations of the SU(3) group. 

Quarks (anti-quarks)   transform in the fundamental (3) (anti-
fundamental, ) representation

qa, (qa)
3

Color SU(3) ℒclassical = −
1
4

GA
μνG

μν
A + ∑

f lav

qa(iγμDμ − m)abqb

R

GB

R

BG
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Fundamentals of QCD

Since quarks transform in the fundamental representation we can define the 
covariant derivative as follows (Dμ)ab = ∂μδab + ig(tC𝒜C

μ )ab

Where  are generator matrices in the fundamental representation of SU(3), 
defined by the Lie algebra , and   define the anti-
symmetric structure constants of the group. 

tC

[tA, tB] = ifABCtC fABC

A second, useful representation is the adjoint one, , where  
and 

T [TA, TB] = ifABCTC

(TA)BC = − ifABC

ℒclassical = −
1
4

GA
μνG

μν
A + ∑

f lav

qa(iγμDμ − m)abqb
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Gluons ℒclassical = −
1
4

GA
μνG

μν
A + ∑

f lav

qa(iγμDμ − m)abqb

 denote the eight color degrees of freedom of the gluon field A, B, C

GA
μν = ∂μ𝒜A

ν − ∂ν𝒜A
μ − gfABC𝒜A

ν𝒜A
μ

Aside from the group theory indices, the driving difference between QCD and 
QED is the final term in the gluon field strength, , this non-abelian 
term couples gluons to each other 

gfABC𝒜A
ν𝒜A

μ

This term drives the differences between QCD and QED. 
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Fundamentals of QCD
We can then define two Casimir’s of SU(N) by the following relations:

               


         with    


And 


  with 


Specifically for QCD  and   and . 

∑
A

tA
abt

A
bc = CFδac CF =

N2 − 1
2N

TrTCTD = ∑
A,B

fABC fABD = CAδCD CA = N

N = Nc = 3 CF = 4/3 CA = 3
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Fundamentals of QCD. ∑
A

t A
abt

A
bc = CFδac

Key point  - 

Since we dont observe individually charged color states we always sum over 
color in our calculations therefore : 

QCD amplitudes are nearly always expressed as polynomials in  and CF CA
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Gauge fixing (and ghosts) 

The other two pieces of the Lagrangian are more field theoretic in nature and 
are necessary to define a physical gluon propagator (Gauge fixing) and then 
cancel any unphysical modes introduced by the gauge fixing (ghost term). 

A common choice for the gauge fixing terms is the following  

ℒgauge−fixing = −
1
2λ

(∂μ𝒜μ
a)2

Known as the covariant gauge, setting  is the Feynman gauge. λ = 1
This choice requires the inclusion of the following ghost Lagrangian 

 ℒghost = (∂μηA)†(Dμ
ABηB)

Where  is a complex scalar which obeys Fermi-Dirac Statistics.   η
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Feynman rules in covariant gauge - Propagators  

δAB[−gμν + (1 − λ)
pμpν

p2 + iϵ
]

i
p2 + iϵ

δab i
(γμpμ − m + iϵ)ji

δAB i
p2 + iϵ

p

p

pA, μ B, ν

a, i b, j

A B
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Feynman rules  - gluon self-interactions Vertices  

−gfABC[(p − q)σgμν + (q − r)μgνσ + (r − p)νgσμ]








−ig2 fXAC fXBD(gμνgσδ − gμδgνσ)
−ig2 fXAD fXBC(gμνgσδ − gμσgνν)
−ig2 fXAB fXCD(gμσgνδ − gμδgνσ)

Aμ
A, μ

B, ν

B, ν

C, σ

C, σ

D, δ

r
q

p
All momentum incoming
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Feynman rules  - gluon Fermion/ghost Vertices  

gfABCqμ

−ig(tA)cb(γμ)ji

A, μ

A, μ

b, i c, j

B C
q



THE STRONG 
COUPLING -   αS
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   αs

Let’s consider a dimensionless observable  which depends on a single scale . R Q

Classically we would expect this to be constant, since there is no other scale to 
make a dimensionless variable from. 

However, in QFT the picture is not so simple. The renormalization of the coupling 
 introduces a second parameter  the renormalization scale at 

which the UV divergences are removed. 
αS = g2

s /(4π) μ

So  can depend the ratio of scales  and need not be constant. R Q2/μ2
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Running of    αs

This doesn’t seem to make sense though  is an arbitrary parameter, introduced 
as part of the renormalization prescription and not a fundamental parameter of the 
QCD Lagrangian. 

μ

The renormalized coupling and dependence on the ratio  must therefore 
conspire to ensure that  does not depend on . 

Q2/μ2

R μ

μ2 d
dμ2

R(Q2/μ2, αS) ≡ (μ2 ∂
∂μ2

+ μ2 ∂αS

∂μ2

∂
∂αS ) R(Q2/μ2, αS) = 0
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(μ2 ∂
∂μ2

+ μ2 ∂αS

∂μ2

∂
∂αS ) R(Q2/μ2, αS) = 0

We can tidy up the equation by defining the following quantities 

Running of    αs

      and    t = ln ( Q2

μ2 ) β(αS) = μ2 ∂αS

∂μ2

(Defined at fixed bare coupling) 

So that


              (−
∂
∂t

+ β(αS)
∂

∂αS ) R(et, αS) = 0
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The running coupling    αs(Q2)

We can solve our equation by introducing the following running coupling 


                                                      

αS(Q2)

t = ∫
αS(Q2)

αS(μ2)

dx
β(x)

(−
∂
∂t

+ β(αS)
∂

∂αS ) R(et, αS) = 0
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The running coupling    αs(Q2)

We can solve our equation by introducing the following running coupling 


                                                      

αS(Q2)

t = ∫
αS(Q2)

αS(μ2)

dx
β(x)

(−
∂
∂t

+ β(αS)
∂

∂αS ) R(et, αS) = 0

Differentiating, using the fundamental theorem of calculus we can write


                  and      
∂αS(Q2)

∂t
= β(αS(Q2))

∂αS(Q2)
∂αS(μ2)

=
β(αS(Q2))
β(αS(μ2))
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The running coupling    αs(Q2)

We can solve our equation by introducing the following running coupling 


                                                      

αS(Q2)

t = ∫
αS(Q2)

αS(μ2)

dx
β(x)

(−
∂
∂t

+ β(αS)
∂

∂αS ) R(et, αS) = 0

Differentiating, using the fundamental theorem of calculus we can write


                  and      
∂αS(Q2)

∂t
= β(αS(Q2))

∂αS(Q2)
∂αS(μ2)

=
β(αS(Q2))
β(αS(μ2))

This means that  solves our   independence equation, 

and all of the scale dependence in  enters through the running of the coupling 

. 

R(1,αS(Q2)) μ
R

αS(Q2)
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The  function.   β

The  function is determined from the renormalization group equation 

(RGE)                                    

β

Q2 ∂αS(μ2)
∂Q2

= β(αS(μ2))

Expanding as a perturbative series we write   

 β(αS(μ2)) = − αS

∞

∑
n=0

βn ( αS(μ2)
4π )

n+1
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The  function.   β

The first couple of orders in perturbation theory are written as 

 and   with β0 = 4πb β1 = 16π2bb′￼

  and b =
11CA − 2nF

12π
b′￼=

17C2
A − 5CAnF − 3CFnF

2π(11CA − 2nF)

β(αS(μ2)) = − αS

∞

∑
n=0

βn ( αS(μ2)
4π )

n+1

This should be contrasted with the beta function from QED 

βQED =
1

3π
α2 + …

Which is positive
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The  function.   β

The first couple of orders in perturbation theory are written as 

 and   with β0 = 4πb β1 = 16π2bb′￼

  and b =
11CA − 2nF

12π
b′￼=

17C2
A − 5CAnF − 3CFnF

2π(11CA − 2nF)

Crucially if  the  function is negative nF < 17 β

β(αS(μ2)) = − αS

∞

∑
n=0

βn ( αS(μ2)
4π )

n+1

This should be contrasted with the beta function from QED 

βQED =
1

3π
α2 + …

Which is positive
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The  function.   β

We can gleam more insight into the consequences of this sign difference by deriving a 
formula which relates the running coupling to the renormalized one. 


Our starting point is a perturbative expansion of our differential equation

Q2 ∂αS(μ2)
∂Q2

= β(αS(μ2))

Q2 ∂αS(Q2)
∂Q2

= − bα2
S(Q2)(1 + b′￼αS(Q2) + …)

Truncating the RHS at lowest order we can solve the resulting differential 
equation 

αS(Q2) =
αS(μ2)

1 + bαS(μ2)ln(Q2/μ2)
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Asymptotic freedom 

αS(Q2) =
αS(μ2)

1 + bαS(μ2)ln(Q2/μ2)

This equation tells us a lot about the differences between QCD and QED and 
how they emerge from the different structures of the theory. 

As  becomes large (i.e. at very high scales) the coupling is 
suppressed and becomes small 

ln Q2/μ2

b =
11CA − 2nF

12π

This phenomenon is known as asymptotic freedom
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Asymptotic freedom 

αS(Q2) =
αS(μ2)

1 + bαS(μ2)ln(Q2/μ2)

αS(M2
Z) = 0.118 ± 0.0009

1 5 10 50 100 500 10000.05

0.10

0.15

0.20

0.25

0.30

0.35

Q(GeV)

α
S(
Q
2 )

The blue curve shows us 
the total 1-loop running for 
a given input αS(M2

Z)

The two other curves show 
us what would happen with 
gluons only  (red) 
and quarks only  
(green)

nF → 0
CA → 0

CA → 0

nF → 0
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Resummation 

Returning to our original observable , lets expand our theoretical prediction as a 
perturbative expansion 

R
R = R1αS + …

αS(Q2) =
αS(μ2)

1 + bαS(μ2)ln(Q2/μ2)
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Resummation 

Returning to our original observable , lets expand our theoretical prediction as a 
perturbative expansion 

R
R = R1αS + …

αS(Q2) =
αS(μ2)

1 + bαS(μ2)ln(Q2/μ2)

We can write  in terms of  using our formula above R(1,αS(Q2)) αS(μ2)

R(1,αS(Q2)) = R1αS(μ2)
∞

∑
j=0 (−αS(μ2)b ln

Q2

μ2 )
j

= R1αS(μ2)(1 − αS(μ2)bt + α2
S(μ2)(bt)2 + …)
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Resummation 

Returning to our original observable , lets expand our theoretical prediction as a 
perturbative expansion 

R
R = R1αS + …

αS(Q2) =
αS(μ2)

1 + bαS(μ2)ln(Q2/μ2)

We can write  in terms of  using our formula above R(1,αS(Q2)) αS(μ2)

R(1,αS(Q2)) = R1αS(μ2)
∞

∑
j=0 (−αS(μ2)b ln

Q2

μ2 )
j

= R1αS(μ2)(1 − αS(μ2)bt + α2
S(μ2)(bt)2 + …)

Thus at each order in perturbation theory there are logarithms of  which get 
resummed when we use the running coupling. If the ratio is sizable this can lead to a 
significant improvement in theoretical accuracy “for free”.  This type of idea is widely 
used at the LHC. 

Q2/μ2



MEASURING -   αS
(ALSO A MINI INTRODUCTION TO 
HIGHER ORDER CORRECTIONS IN 
QCD…)
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QCD in  collisionse+e−

As a first example lets look at the QCD equivalent of , which is 
hadrons. The Feynman diagram at LO is below. 

e+e− → μ+μ−

e+e− →
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The R-ratio 
It’s nice to compare the ratio of the  total hadronic cross section to the muonic 
one. At energies below the Z pole, only the photon exchange diagram contributes and 
we have: 

e+e−

R =
σ(e+e− → hadrons)

σ(e+e− → μ+μ−)
= 3∑

q

Q2
q

Source : Halzen and Martin “Introductory course in Modern Particle Physics”
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Experimental results for the R-ratioIII Latin American Symposium on High Energy Physics by E. Fernández
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Figure 14: The ratio of the measured hadronic

cross-section to the theoretical µ+µ° cross-section.

The open points correspond to the cross-section for

non-radiative events, corrected to Born level, while

the black points corresponds to inclusive events. The

points at the peak and the theoretical µ+µ° cross-

section are also corrected to Born level (see text and

ref. [26]).
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Figure 15: Aleph measurement of Rb up to 183 GeV

energies, compared with the SM expectation[19]).

(2) Using measured values of æ(µ+µ°)/æ(qq̄)
and æ(ø+ø°)/æ(qq̄). The result is

Æ°1(157.42 GeV ) = 119.9+6.6°5.4 ± 0.1

which is independent of the running of at low
Q2. This value diÆers by 2.6 standard deviations
from the value at Q2 = 0. OPAL has also com-
bined their measurements with those at TRIS-
TAN. The result, extrapolated to the Z, is

Figure 16: Measurement of the hadronic ∞ ° Z in-
terference from OPAL [25].
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Figure 17: OPAL measurements of Æem together

with measurements at lower energies [26].

Æ°1(mZ) = 121.4
+6.0
°4.9 ± 0.1

(see Fig. 17). This result does not depend on
assumptions about the running of Æ at low Q2,
which is the main uncertainty on the value of
Æem used at LEP1 for electroweak analysis, as
explained in sections 2.5.6. Unfortunately the
result has a large statistical error.
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At the Z pole we can neglect the photon 
contributions and write the ratio from the partial 
widths 

 RZ =
Γ(Z → hadrons)

Γ(Z → μ+μ−)
=

3∑q (A2
q + V2

q)

A2
μ + V2

μ

Where  and  define the axial and vector 
couplings of the fermion to the Z 

Af Vf
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Determining RZ

Taking  as an input and 5 active quark flavors we get  and 
.  

sin2 θW = 0.23 R = 11/3
RZ = 20.09

 Looking at a measurement from LEP we Rexp
Z = 20.79 ± 0.04

On the one hand, that’s quite a good agreement for 
such a quick calculation, but on the other, its notably 
off. Can we improve it? 

Idea : Assume the difference is driven by higher 
order corrections, and use these corrections to 
calculate αS(Mz)

III Latin American Symposium on High Energy Physics by E. Fernández
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Higher order corrections to RZ

Our aim is now to compute the  corrections to 𝒪(αS) RZ

Spoiler alert: The QCD corrections are independent of the nature of the 
electroweak boson exchanged. We’ll make our notation easier and consider only 
the corrections to the photon exchange and use this result for the Z case of interest.  

At one-loop there are three diagrams to consider 
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Loop corrections to RZ

ℓq
ℓ + p

ℓ − p′￼

p′￼

For massless quarks the last two diagrams don’t contribute, so we can look just at the 
vertex correction, 
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Loop corrections to RZ

ℓq
ℓ + p

ℓ − p′￼

p′￼

For massless quarks the last two diagrams don’t contribute, so we can look just at the 
vertex correction, 

Momentum conservation results in one momentum 
, being unconstrained. So we integrate over it. ℓ

Applying the Feynman rules for QCD we’ll find integrals 
which looks like  

 I1 = ∫
d4ℓ

(2π)4

1
ℓ2(ℓ + p)2(ℓ − p′￼)2

And  

 Iμν
1 = ∫

d4ℓ
(2π)4

ℓμℓν

ℓ2(ℓ + p)2(ℓ − p′￼)2
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Loop corrections to RZ

Let consider what happens to the integrals for small values of the loop 
momentum 

 IIR
1 ∝ ∫ dℓ

ℓ3

ℓ2(ℓ ⋅ p)(ℓ ⋅ p′￼)

Where I’ve used , there’s an angular 
integration here too but we can neglect that 
for our discussion at present. 

p2 = 0
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Loop corrections to RZ

Let consider what happens to the integrals for small values of the loop 
momentum 

 IIR
1 ∝ ∫ dℓ

ℓ3

ℓ2(ℓ ⋅ p)(ℓ ⋅ p′￼)

Where I’ve used , there’s an angular 
integration here too but we can neglect that 
for our discussion at present. 

p2 = 0

This scales like  and there is a logarithmic singularity present as . ∫ dx /x ℓ → 0

In order of having a chance of understanding this infinity we need to regulate this 
singularity somehow.  
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Dimensional regularization 

The idea is to regulate the integral by making a change of the form 

, then the singularity will be represented  as a term  in our 

resulting expressions. 
∫ dx /x → ∫ dx /x1+ϵ 1/ϵ
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Dimensional regularization 
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resulting expressions. 
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Practically this can be achieved by dimensional regularization in which we move the 
number of spacetime directions away from 4 the most common definition being 

. d = 4 − 2ϵ



38

Dimensional regularization 

The idea is to regulate the integral by making a change of the form 

, then the singularity will be represented  as a term  in our 

resulting expressions. 
∫ dx /x → ∫ dx /x1+ϵ 1/ϵ

Practically this can be achieved by dimensional regularization in which we move the 
number of spacetime directions away from 4 the most common definition being 

. d = 4 − 2ϵ

Key point : Loop Feynman integrals are commonly expressed as a series in , 
with singularities appearing as poles of the form . 

ϵ
ϵ−n
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Loop corrections to RZ

Getting back to our task at hand we can evaluate our Feynman integrals in 
-dimensions and find that the contribution to the cross section is (up to an overall 
normalizing factor which is 1as )

d

ϵ → 0
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Loop corrections to RZ

Getting back to our task at hand we can evaluate our Feynman integrals in 
-dimensions and find that the contribution to the cross section is (up to an overall 
normalizing factor which is 1as )

d

ϵ → 0

σqq
virt = 3σ0 ∑

q

Q2 CFαS

2π (−
2
ϵ2

−
3
ϵ

− 8 + π2 + 𝒪(ϵ))
Here  denotes the lowest order prediction for . σ0 e+e− → ff
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Loop corrections to RZ

Getting back to our task at hand we can evaluate our Feynman integrals in 
-dimensions and find that the contribution to the cross section is (up to an overall 
normalizing factor which is 1as )

d

ϵ → 0

σqq
virt = 3σ0 ∑

q

Q2 CFαS

2π (−
2
ϵ2

−
3
ϵ

− 8 + π2 + 𝒪(ϵ))
Here  denotes the lowest order prediction for . σ0 e+e− → ff

Our cross section is badly divergent, and the divergences are not of a UV origin 
(i.e. not fixed by renormalization) and also appear to be deeper than we just 
reasoned. 

What gives?
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Loop corrections to RZ

These singularities are associated with low energy limits of the loop 
momentum, so we call them Infra-red or IR singularities. 


In order to fix the cross section we have to consider other  corrections 𝒪(αS)

We considered virtual corrections, 
where we interfered a one-loop 
amplitude with a tree-level one. 
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Real corrections to RZ

We can construct the cut a different way, in which we cut across the gluon line too and 
interfere two tree-level amplitudes for  e+e− → qqg

Since the gluon is in the final 
state, it can be resolved and we 
call these terms real corrections 
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Real corrections to RZ

ℳqqg =

There are two diagrams for the amplitude for 
  shown above.  e+(q1) + e−(q2) → q(p1) + q(p2) + g(k)
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Real corrections to RZ

ℳqqg =

There are two diagrams for the amplitude for 
  shown above.  e+(q1) + e−(q2) → q(p1) + q(p2) + g(k)

Applying the Feynman rules, and summing over spins/pols and colors we find the 
spin averaged matrix element squared to be  

 
1
4

|ℳ |2 = 6CFe4Q2
qg2

s
(p1 ⋅ q1)2 + (p1 ⋅ q2)2 + (p2 ⋅ q1)2 + (p2 ⋅ q2)2

(q1 ⋅ q2)(p1 ⋅ k)(p2 ⋅ k)
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Real corrections to RZ

 
1
4

|ℳ |2 = 6CFe4Q2
qg2

s
(p1 ⋅ q1)2 + (p1 ⋅ q2)2 + (p2 ⋅ q1)2 + (p2 ⋅ q2)2

(q1 ⋅ q2)(p1 ⋅ k)(p2 ⋅ k)

We introduce the variables  and . 

Inspecting the denominators shows us where the singular regions are.  

x1 = 2Eq / s x2 = 2Eq / s
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Real corrections to RZ

 
1
4

|ℳ |2 = 6CFe4Q2
qg2

s
(p1 ⋅ q1)2 + (p1 ⋅ q2)2 + (p2 ⋅ q1)2 + (p2 ⋅ q2)2

(q1 ⋅ q2)(p1 ⋅ k)(p2 ⋅ k)

We introduce the variables  and . 

Inspecting the denominators shows us where the singular regions are.  

x1 = 2Eq / s x2 = 2Eq / s

 can vanish when either  or . 

Note that both can occur simultaneously. 


We call the first a soft singularity (gluon is emitted with very low energy) and the 
second a collinear singularity (gluon of any energy emitted parallel to quark (or 
anti-quark)

p1 ⋅ k = EqEg(1 − cos θqg) Eg → 0 cos θqg → 1
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Real corrections to RZ

We can write the cross section in more transparent way using our  variables xi

σqqg = 3σ0 ∑
q

Q2
q ∫ dx1dx2

CFαs

2π
x2

1 + x2
2

(1 − x1)(1 − x2)

The bounds of integration are  and . We see the 
singular points at  (collinear) and soft at . 

0 ≤ xi ≤ 1 x1 + x2 ≥ 1
xi = 1 x1 = x2 = 1

Obviously to get a sensible answer we’ll need to regulate the real corrections too. A 
smart strategy would be to use the same regulator for the real as we did for the virtual 
(loop) corrections. This means we should reevaluate the integrals in -dimensions.  d
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Real corrections to RZ

Shifting to d-dimensions (both in the phase space and in the Dirac traces) we get

σqqg = 3σ0 ∑
q

Q2
q ∫

dx1dx2

(1 − x1 − x2)ϵ

CFαs

2π
(1 − ϵ)(x2

1 + x2
2) − 2ϵ((1 − x1)(1 − x2) − (1 − x1 − x2)))

(1 − x1)1+ϵ(1 − x2)1+ϵ

I’ve normalized this by the same factor as the virtual (but suppressed it for readability) 

σqqg = 3σ0 ∑
q

Q2
q ∫ dx1dx2

CFαs

2π
x2

1 + x2
2

(1 − x1)(1 − x2)
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Real corrections to RZ

Shifting to d-dimensions (both in the phase space and in the Dirac traces) we get

σqqg = 3σ0 ∑
q

Q2
q ∫

dx1dx2

(1 − x1 − x2)ϵ

CFαs

2π
(1 − ϵ)(x2

1 + x2
2) − 2ϵ((1 − x1)(1 − x2) − (1 − x1 − x2)))

(1 − x1)1+ϵ(1 − x2)1+ϵ

I’ve normalized this by the same factor as the virtual (but suppressed it for readability) 

σqqg = 3σ0 ∑
q

Q2
q ∫ dx1dx2

CFαs

2π
x2

1 + x2
2

(1 − x1)(1 − x2)

This integral can now be performed and the result is 

 σqqg = 3σ0 ∑
q

Q2
q

CFαS

2π ( 2
ϵ2

+
3
ϵ

+
19
2

+ π2 + 𝒪(ϵ))
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 corrections to the hadronic cross section𝒪(αs)

We can now combine both type of corrections, real : 

 σqqg = 3σ0 ∑
q

Q2
q

CFαS

2π ( 2
ϵ2

+
3
ϵ

+
19
2

− π2 + 𝒪(ϵ))

σqq
virt = 3σ0 ∑

q

Q2 CFαS

2π (−
2
ϵ2

−
3
ϵ

− 8 + π2 + 𝒪(ϵ))
And virtual 

Obtaining  

σhad
NLO = 3σ0 ∑

q

Q2
q (1 +

3
2

CFαS

2π )
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σhad
NLO = 3σ0 ∑

q

Q2
q (1 +

3
2

CFαS

2π )
We see that the combined virtual (loop) + real contributions are finite 

 corrections to the hadronic cross section𝒪(αs)
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σhad
NLO = 3σ0 ∑

q

Q2
q (1 +

3
2

CFαS

2π )
We see that the combined virtual (loop) + real contributions are finite 

This is no accident, and is a manifestation of the Bloch Nordsieck and Kinoshita Lee 
and Nauenberg theorems which state that suitably defined inclusive quantities 
(where we integrate over emissions) in QFT are free from IR singularities. 

 corrections to the hadronic cross section𝒪(αs)
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σhad
NLO = 3σ0 ∑

q

Q2
q (1 +

3
2

CFαS

2π )
We see that the combined virtual (loop) + real contributions are finite 

This is no accident, and is a manifestation of the Bloch Nordsieck and Kinoshita Lee 
and Nauenberg theorems which state that suitably defined inclusive quantities 
(where we integrate over emissions) in QFT are free from IR singularities. 

The take home message : The total hadronic cross section is a well defined 
and finite quantity in QFT, whereas the exclusive final state  
(with no emission) is not Infra-red safe. 

σ(e+e− → qq)

 corrections to the hadronic cross section𝒪(αs)
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 corrections to 𝒪(αs) RZ

We can now write down an expression for  (the ratio of the total hadronic cross 
section to the muonic one at the Z pole) as 

RZ

RNLO
Z = RLO

Z (1 +
αS(MZ)

π )
Where we used  . Recall that since  and we have a 
measurement from LEP for  we can extract a value of  from our 
calculation. 

CF = 4/3 RLO
Z = 20.09

Rexp
Z αs(MZ)

αS(MZ) = π ( Rexp
Z

RLO
Z

− 1) = 0.11
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More comprehensive extractions of αS(Mz)

Not bad for a short calculation over a 
morning together. Here’s our (lowest 
order) extraction and running, 
compared to the leading world average 
from the Particle Data group (PDG) 
(https://pdg.lbl.gov/). The current world 
average is

αS(MZ) = 0.1179 ± 0.0009

31 9. Quantum Chromodynamics

scheme [569,570].
Summarizing the results from world data on structure functions, taking the unweighted average

of the central values and errors of all selected results, leads to a pre-average value of –s(M2
Z

) =
0.1162 ± 0.0020, see Fig. 9.2.
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Figure 9.2: Summary of determinations of –s(M2
Z

) from the seven sub-fields discussed in the
text. The yellow (light shaded) bands and dotted lines indicate the pre-average values of each
sub-field. The dashed line and blue (dark shaded) band represent the final world average value of
–s(M2

Z
). The “*” symbol within the “hadron colliders” sub-field indicates a determination including

a simultaneous fit of PDFs.

1st December, 2021

https://pdg.lbl.gov/
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Lattice QCD vs collider data extractions

32 9. Quantum Chromodynamics

9.4.4 Hadronic final states of e+e≠ annihilations:
Re-analyses of jets and event shapes in e+e≠ annihilation (j&s), measured around the Z peak
and at LEP2 center-of-mass energies up to 209 GeV, using NNLO predictions matched to NLL
resummation and Monte Carlo models to correct for hadronization e�ects, resulted in –s(M2

Z
) =

0.1224 ± 0.0039 (ALEPH) [571], and in –s(M2
Z

) = 0.1189 ± 0.0043 (OPAL) [572]. Similarly, an
analysis of JADE data [573] at center-of-mass energies between 14 and 46 GeV gives –s(M2

Z
) =

0.1172 ± 0.0051, with contributions from the hadronization model and from perturbative QCD
uncertainties of 0.0035 and 0.0030, respectively. Precise determinations of –s from 3-jet produc-
tion alone (3j), at NNLO, resulted in –s(M2

Z
) = 0.1175 ± 0.0025 [574] from ALEPH data and in

–s(M2
Z

) = 0.1199 ± 0.0059 [575] from JADE. A recent determination is based on an NNLO+NNLL
accurate calculation that allows to fit the region of lower 3-jet rate (2j) using data collected at LEP
and PETRA at di�erent energies. This fit gives –s(M2

Z
) = 0.1188 ± 0.0013 [576], where the domi-

nant uncertainty is the hadronization uncertainty, which is estimated from Monte Carlo simulations.
A fit of energy-energy-correlation (EEC) also based on an NNLO+NNLL calculation together with

αs(MZ2) = 0.1179 ± 0.0009

August 2021
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Figure 9.3: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

1st December, 2021
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Bazavov 14

HPQCD 10 (Wl)

Maltman 08

JLQCD 16

HPQCD 14A

HPQCD 10 (2p)

Figure 9.5: Lattice determinations that enter the FLAG2019 average. The yellow (light shaded)
band and dotted line indicates the average value for this sub-field. The dashed line and blue (dark
shaded) band represent the final world average value of –s(M2

Z
). a

aIn the previous edition, the JLQCD result was incorrectly labelled as “JLQCD17” and had a wrong (too small)
uncertainty.

The final value is obtained by performing a weighted average of the pre-averages. The final
uncertainty however is not the combined uncertainty of the pre-averages. Instead the smallest
uncertainty of the pre-averages is taken, which is the one of the step-scaling category and which is
dominated by the ALPHA 17 result [623]. The final FLAG average (rounded to four digits) is

–s(M2
Z) = 0.1182 ± 0.0008 , (lattice). (9.23)

We believe that this result expresses to a large extent the consensus of the lattice community
and that the imposed criteria and the rigorous assessment of systematic uncertainties qualify for a
direct inclusion of this FLAG average here. As in the previous review, we therefore adopt the FLAG
average with its uncertainty as our value of –s for the lattice category. Moreover, this lattice result
will not be directly combined with any other sub-field average, but with our non-lattice average to
give our final world average value for –s.

1st December, 2021
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• Determined the underlying nature of QCD as an SU( ) gauge theory, with  colors.


• The non-abelian nature of the theory results in self-interactions among the gluons which mediate the 
strong force. This is completely different to QED in which the photons do not carry electric charge. 


• As a result of the new diagrams which involve gluon loops the -function of QCD as the opposite 
sign from that of QED. This broadly explains the properties of QCD. At high energies the coupling is 
reduced, a phenomenon known as asymptotic freedom. This explains how with very high energy 
DIS we can scatter off of individual quarks inside of a proton. 


• On the other hand at lower energy’s  the coupling is large (non-perturbative) and QCD 

confines the quarks to bound states (baryons   or mesons )

Nc Nc = 3

β

∼ Mproton

ϵabcqaqbqc qaqa

Part 1 summary 
The aim of this section has been to introduce you to the fundamentals of QCD, 
starting from the definition of the Lagrangian, and ultimately doing our first NLO 
calculation to extract , here’s a summary of this part: αS(MZ)
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Part 1 summary 
The aim of this section has been to introduce you to the fundamentals of QCD, 
starting from the definition of the Lagrangian, and ultimately doing our first NLO 
calculation to extract , here’s a summary of this part: αS(MZ)

• At high energies, far away from the scale of hadronization, perturbation theory can be used to 
calculate higher order corrections in QCD. 


• We performed an example calculation, computing the next-to-leading order corrections to the 

production of hadrons at an  collider. 


• We saw that higher corrections entered in two ways, as loop corrections to the underlying LO 

topology  (virtual corrections) and real corrections which involved the emission of a 

gluon . Both had IR divergences associated with soft and collinear singularities. 


• When both  types of emission are regulated in the same way, and combined together to make the 
total cross section, these singularities cancel. 

e+e−

e+e− → qq
e+e− → qqg


