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1.
Observed galaxies 
are moving away 

from one another at 
high speeds. 



“Static cosmology” - Universe has no 
beginning and no end, stars move 
because of gravity, but structures in the 
universe are generally static.
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“Static cosmology” - Universe has no 
beginning and no end, stars move 
because of gravity, but structures in the 
universe are generally static.

19th  century

Albert Einstein

● 1905 – Special Theory of Relativity, space and time are not 
separate continua.

● 1915 - General Theory of Relativity, space can contract or 
expand. 

20th  century

He accepts the idea 
of expanding 
universe in 1931.

added in 1917.

1. Curvature change from place to place
2. How are distances calculated at a given 

point given the curvature
3. Mass-energy content (source of the 

curvature)
4. Cosmological constant opposing gravity
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1900!
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Edwin Hubble
1889 – 1953

● Born in Missouri and 
moved to Wheaton, IL in 
1900!

● Discovered that nebulae 
we observe are in fact 
other Galaxies like our 
Milky Way!

● Measured distances and 
velocities to galaxies.

played basketball 
at U. ChicagoPublished 1924.

100 inch telescope at Mt. Wilson (near L.A.)



Henrietta Swan Leavitt
1868 - 1921

Harvard College Observatory
Observing stars in Small and 

Large Magellanic Clouds

Distances are measured using Cepheid stars
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Brighter stars have longer 
periods! Standard Candles

Some stars in these two nebulae have 
variable brightnesses!

Henrietta Swan Leavitt
1868 - 1921

Harvard College Observatory
Observing stars in Small and 

Large Magellanic Clouds



Hubble - finds Cepheids in Andromeda and M33 (Triangulum)

Andromeda is 930,000 light years away.

But Milky Way has a diameter of only 100,000 light years!

Nebulae are other 
galaxies!



1912. - Velocities can be measured using the 
Doppler Effect!

Slipher was first to observe the shift of spectral lines of 
galaxies, making him the discoverer of galactic redshifts. 

Vesto Slipher
1875 - 1969

Lowell Observatory, Arizona



More distant galaxies seem to be 
moving away faster!

Back to Hubble…
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The expansion is accelerating!

S. Perlmutter        A. Riess       B. Schmidt

Type Ia supernova
They can be used as standard 
candles but to much larger distances 
- they are super bright!

5 billion times brighter than the Sun



The expansion is accelerating!

Distant supernovae show that the 
speed of galaxies receding in relation 
to the Milky Way increases over time! 

S. Perlmutter        A. Riess       B. Schmidt

Nobel Prize 2011.
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2.
Observations of the 
cosmic microwave 

background 
radiation.



We measure a 2.7 K signal.

380,000 yrs ago this signal was 3000K

Bell Labs, New Jersey, 1960.

 Robert Wilson       Anro Penzias 

1965. - they publish the finding of a 
background "noise" coming from every 
direction.
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380,000 yrs ago this signal was 3000K

Bell Labs, New Jersey, 1960.

 Robert Wilson       Anro Penzias 

1965. - they publish the finding of a 
background "noise" coming from every 
direction.



Robert Dicke
1916 - 1997

Princeton University

Nobel Prize 1987.
Penzias & Wilson

If there had been a big bang, the residue of the explosion should by now take the form of 
a low-level background radiation throughout the Universe. 



With better telescopes we were able to see 
smaller and smaller fluctuations in the 2.7K 
signal!

WMAP: 5 times better resolution 0.5°  
0.00001 K 

PLANK: 15 times better 0.16°

0.000001 K
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With better telescopes we were able to see 
smaller and smaller fluctuations in the 2.7K 
signal!

COBE: Resolution 7°

fluctuations of 0.0002 K

WMAP: 5 times better resolution 0.5°  
0.00001 K 

PLANK: 15 times better 0.16°

0.000001 K



These fluctuations lead to the formation 
of galaxies and other structures!



Sounds complicated. 
How do we prove the theory?

3.
Formation of first 

elements. 
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We know exactly the temperature (i.e. 
baryon-to-photon ratio) that the Universe 
had when it was forming first nuclei - H, D, 
He, Li. 

10s - 20 min after the Big Bang
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David N. Schramm 
1945 - 1997                     
U. Chicago

We know exactly the temperature (i.e. 
baryon-to-photon ratio) that the Universe 
had when it was forming first nuclei - H, D, 
He, Li. 

Let’s observe some very old stars to see if 
abundances of these elements match our 
expectations. 

10s - 20 min after the Big Bang

Observations and theory match very well!
….well almost all of them (Li problem)

MADE IN BIG BANG
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How do we reach even earlier epochs?

4.
Gravitational wave 

background! 



● Stochastic gravitational wave 
backgrounds (SGWBs) - superposition of 
gravitational waves with different 
frequencies coming from all directions.

● Evidence of the earliest moments before 
photons could propagate.

● Phenomena like inflation, primordial 
black holes, cosmic strings, and phase 
transitions as possible sources.

● In 2023 news from NANOGrav, CPTA, 
EPTA, and PPTA (first evidence, but still 
below 5σ).

● For higher frequencies we need longer 
detector arms.

Gravitational Waves

LIGO

4 km
kHz



● Stochastic gravitational wave 
backgrounds (SGWBs) - superposition of 
gravitational waves with different 
frequencies coming from all directions.

● Evidence of the earliest moments before 
photons could propagate.

● Phenomena like inflation, primordial 
black holes, cosmic strings, and phase 
transitions as possible sources.

● In 2023 news from NANOGrav, CPTA, 
EPTA, and PPTA (first evidence, but still 
below 5σ).

● For higher frequencies we need longer 
detector arms.

Gravitational Waves

LIGOLISA
mHz



● Pulsar Timing Arrays - detecting 
gravitational waves by measuring the time 
of arrival of radio pulses from millisecond 
pulsars. Pulses are disturbed by 
gravitational waves between the pulsar and 
Earth.

Gravitational Waves

nHz

Helling-Downs 
Curve for 2 
pulsars as a 
function of their 
separation angle.

dos Santos et al. 2023.



● Pulsar Timing Arrays - detecting 
gravitational waves by measuring the time 
of arrival of radio pulses from millisecond 
pulsars. Pulses are disturbed by 
gravitational waves between the pulsar and 
Earth.

Gravitational Waves

nHz

Credit: NANOGrav

Helling-Downs 
Curve for 2 
pulsars as a 
function of their 
separation angle.

dos Santos et al. 2023.
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Being a cosmologist today is all about big data
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Primordial Fluctuations 
+

Gravity and Time 
=

Everything We See 
Today



Primordial Fluctuations 
+

Gravity and Time 
=

Everything We See 
Today

Can we encode this data into a 
Graph? Each node is a galaxy 
with its position and properties.







Encode galaxy catalogs into graphs and infer 
underlying cosmology.

Several great simulations are available. 
Which one do we choose?



Credit: CAMELS
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Regression - Cosmology With Graphs
A. Roncoli

NeurIPS 2023.
Roncoli et al. 2023. 

Graph Neural Networks:
ideal for sparse 
galaxy catalogs!

SIMBA -> SIMBA      SIMBA->IllustrisTNG

z=0   1000 simulations each
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Align data distributions in the latent space of the network by forcing the 
network to find more robust domain-invariant features.



Regression - Cosmology With Graphs
A. Roncoli

NeurIPS 2023.
Roncoli et al. 2023. 

Graph Neural Networks:
ideal for sparse 
galaxy catalogs!

SIMBA -> SIMBA      SIMBA->IllustrisTNG

z=0   1000 simulations each

28% 
better 
relative 
error

order of 
mag. 
better 𝜒2
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Strong gravitational lensing

● When light from a distant galaxy 
pases near a massive galaxy 
cluster the light bends because 
the space-time has strong 
curvature near massive objects.

● We can now see light from a 
galaxy that would otherwise be 
obscured and too distant.

● And use it to infer cosmological 
parameters (and learn about dark 
matter)!
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Strong gravitational lensing

● When light from a distant galaxy 
pases near a massive galaxy 
cluster the light bends because 
the space-time has strong 
curvature near massive objects.

● We can now see light from a 
galaxy that would otherwise be 
obscured and too distant.

● And use it to infer cosmological 
parameters (and learn about dark 
matter)!

Einstein radius

Tian et al. 2023.



Being Bayesian with AI 
Simulation-Based Inference (SBI)

𝞱
Prior

Likelihood

Simulator
     z

x
Likelihood 

ratio

Posterior

+MCMC

+MCMC

Poh et al. 2022; 2024. in prep
Swierc et al. 2023.
Jarugula et al. 2024. 

Masked Autoregressive Flows (MAF) 

Normalizing flows Autoregressive models

Nice video explanation here.

https://vimeo.com/252105837


● Estimate posteriors of lens 
parameters (up tp 12) without the 
need for slow MCMC and manual 
modeling.

● NPE is mode flexible and accurate 
than Bayesian NN which have a 
Gaussian constraint.



● Use a regular CNN to 
estimate likelihood 
ratio and then the 
posterior of w.



● Use a regular CNN to 
estimate likelihood 
ratio and then the 
posterior of w.

● By combining likelihoods 
from multiple lenses we 
get tighter constraints 
on the cosmology.

Future facilities ~105 lenses



Complex models 
based on data.

 
Help constrain 

cosmology.

PROS

● Enabling work with huge datasets.
● Speed of analysis.
● Avoid compound biases in 

analysis.
● Help us understand and work with 

multi-dimensional data.
● Models include details, no need 

for approximations.
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based on data.

 
Help constrain 

cosmology.

PROS

● Enabling work with huge datasets.
● Speed of analysis.
● Avoid compound biases in 

analysis.
● Help us understand and work with 

multi-dimensional data.
● Models include details, no need 

for approximations.

CONS

● Model is as good as the data.
● Watch out for biased data!
● Often do not work for 

out-of-distribution data.
● We have to carefully think about the 

data and how to apply AI methods.
● It will learn even the biases we are not 

aware of.



● There is no cosmology without particle physics.
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● There is no cosmology without particle physics.
● Many unknowns remain:

○ Dark matter
○ Inflation
○ Origin of the matter-antimatter asymmetry
○ Dark energy

● With better telescopes, new probes (GW), improved HEP experiments, new 
theories, more computing power and better algorithms (AI) we will answer these 
questions!

THANK YOU!

aleksand@fnal.gov



SBI setup

images

summary stats

Simulator

lens 
params.

posterior

CNN 
embedding network

NPE 
Masked Autoregressive Flow

I

I
+

Poh et al. 2022 (NeurIPS 2022) arXiv:2211.05836
Poh et al. 2024 - coming very soon!

Jason Poh



 1, 5, 12 parameter models

Data - DES mocks (ground-based observations)

Einstein radius 
Ellipticity components

lens-source offset 

external shear 

Sersic profile with: 
apparent magnitude 

 half-light radius
Sersic index 

ellipticity components 

PRELIMINARY Jason Poh



● We also run tests 
for:
○ 3 OOD tests 

sets
○ 3 initial 

random seeds



5-parameter results

PRELIMINARY

Einstein radius error 
of 0.02 arcsec
(~2%) 



5-parameter results

residuals 

PRELIMINARY



5-parameter results

PRELIMINARY

Posterior Coverage Plot 
Are uncertainties well 
calibrated?



Credit: Caltech
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Training 
= 

Task Loss
+ 

DA Loss

Combining Datasets

Distance-based methods Adversarial methods

Ganin et al. (2016)Gretton et al. (2012)

Align data distributions in the latent space of the network by forcing the network 
to find more robust domain-invariant features.

DOMAIN ADAPTATION



Works on unlabeled target domain!
Can be applied to new data, no need for 

scientists to label anything.!

Combining Datasets

Distance-based methods Adversarial methods

Align data distributions in the latent space of the network by forcing the network 
to find more robust domain-invariant features.

DOMAIN ADAPTATION



DANN - feature extractor + label 
predictor + domain classifier

● Gradient reversal layer - 
multiplies the gradient by a 
negative constant during the 
backpropagation.

● Results in the extraction of 
domain-invariant features.

● Only source domain images 
are labeled during training.

Ganin et al. (2016)

Domain Adversarial Neural Networks - DANNs

Ganin et al. (2016)



DANN - feature extractor + label 
predictor + domain classifier

● Gradient reversal layer - 
multiplies the gradient by a 
negative constant during the 
backpropagation.

● Results in the extraction of 
domain-invariant features.

● Only source domain images 
are labeled during training.

Ganin et al. (2016)

Domain Adversarial Neural Networks - DANNs
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Ganin et al. (2016)



From Arthur Gretton (NIPS 2016 Workshop on Adversarial Learning, Barcelona Spain)

Smola et al. (2007)
Gretton et al. (2012)Maximum Mean Discrepancy - MMD
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CLASSIFYFIND AND REFINE 
FEATURES

SIMULATED 
IMAGES

+
LABELS

(NON)MERGER

Combining Datasets

SIMULATED 
IMAGES

+
LABELS

OBSERVED 
IMAGES

TESTING

Testing the model

 Simulated   Observed

CLASSIFY

Domain Adaptation



Source - Illustris          Target - SDSS observations

Ćiprijanović et al. 2020.
Ćiprijanović et al. 2021. 

This is how the network sees the data.
2D representation of network’s latent space.

Combining Datasets
Source - Illustris           Target - SDSS observations



Source - Illustris         

M

NM

Combining Datasets

Regular TrainingImportant regions are 
highlighted!

Ćiprijanović et al. 2020.
Ćiprijanović et al. 2021. 
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Combining Datasets

s. accuracy
>80%

Regular TrainingImportant regions are 
highlighted!

Ćiprijanović et al. 2020.
Ćiprijanović et al. 2021. 



Source - Illustris          Target - SDSS observations

M

NM

Combining Datasets

s. accuracy
>80%

Regular Training

Ćiprijanović et al. 2020.
Ćiprijanović et al. 2021. 



Source - Illustris          Target - SDSS observations

M

NM

Combining Datasets

t. accuracy 
~50%

s. accuracy
>80%Ćiprijanović et al. 2020.

Ćiprijanović et al. 2021. 



Source - Illustris          Target - SDSS observations

M

NM

M

NM

Combining Datasets

Domain Adaptation
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Source - Illustris          Target - SDSS observations

M

NM

M

NM

t. accuracy 
~80%

s. accuracy
~90%

Up to 30% increase!

Combining Datasets

Ćiprijanović et al. 2020.
Ćiprijanović et al. 2021. 


