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Introduction 

At the end of the last section we computed the  corrections to the hadronic 
cross section at lepton colliders.  

𝒪(αS)

This was nice, but we are leaving a lot on the table. We would like to able to look at a 
wider range of more dynamic variables scattering angles, energies etc. etc. 

That’s the aim of this section.  

Since its easier from a pedagogy point of view we’ll mostly stick to lepton 
colliders again today, but all of the ideas we discuss are directly applicable to 
hadron colliders too.
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Jet cross sections

At lowest order, our picture is pretty simple, we produce a quark-antiquark pair which 
are back-to-back. 

We then simply assume that the parton fragments “somehow” into a hadron.  

Since the virtual (loop) topology lives in the same phase space, we make the 
same assumption there too. 
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Jet cross sections

σqqg = 3σ0 ∑
q

Q2
q ∫ dx1dx2

CFαs

2π
x2

1 + x2
2

(1 − x1)(1 − x2)

Next we consider the cross section for the production of a quark pair + a gluon at a 
lepton collider. Recall  from last time :  

Where  denotes the energy fraction of each quark i.e. xi x1 = 2Eq / s
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Jet cross sections σqqg = 3σ0 ∑
q

Q2
q ∫ dx1dx2

CFαs

2π
x2

1 + x2
2

(1 − x1)(1 − x2)

Now we are interested in thinking a little bit more differentially today. So 
lets re-write our cross section as a doubly differential quantity in the 
quark-antiquark energy fractions,  

1
σ0

d2σqqg

dx1dx2
=

CFαs

2π
x2

1 + x2
2

(1 − x1)(1 − x2)
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6

Jet cross sections σqqg = 3σ0 ∑
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Now we are interested in thinking a little bit more differentially today. So 
lets re-write our cross section as a doubly differential quantity in the 
quark-antiquark energy fractions,  

1
σ0

d2σqqg

dx1dx2
=

CFαs

2π
x2
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2

(1 − x1)(1 − x2)

Let’s think about what happens for various values of . (Recall  and ) xi 0 ≤ xi ≤ 1 x1 + x2 ≥ 1

If both  are not close to 1 (say for instance around 0.5) then the differential cross 
section for the emission of a gluon is suppressed relative to the no-emission cross 
section by a power of , i.e. expected perturbative scaling 

xi

αS



7

Jet cross sections

1
σ0

d2σqqg

dx1dx2
=

CFαs

2π
x2

1 + x2
2

(1 − x1)(1 − x2)

Note that in the region just defined the gluon 
possess a sizable energy fraction (since 

) and is not emitted close 
to either quark or anti-quark.   
xg = 2 − x1 − x2

Mostly likely this type of configuration will 
therefore have 3 distinct “resolved” emissions.  
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Jet cross sections

1
σ0

d2σqqg

dx1dx2
=

CFαs

2π
x2

1 + x2
2

(1 − x1)(1 − x2)

What about the region where one of the  is near 1? Then the differential cross section 
diverges.    

xi
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Jet cross sections
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What about the region where one of the  is near 1? Then the differential cross section 
diverges.    

xi

Here perturbation theory appears to breaks down, since the scaling compared to the 
lower order cross section is much greater than . αS
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Jet cross sections

1
σ0

d2σqqg

dx1dx2
=

CFαs

2π
x2

1 + x2
2

(1 − x1)(1 − x2)

What about the region where one of the  is near 1? Then the differential cross section 
diverges.    

xi

Here perturbation theory appears to breaks down, since the scaling compared to the 
lower order cross section is much greater than . αS

Thinking back to last time, we recall that in the region where the matrix element blows 
occurs when the gluon is emitted with either very small energy (soft) or in the same 
direction as one of the fermions (collinear).  
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QCD observables  
Observable made from hadron(s)

There are two key points: 


1) Experiments don’t measure patrons, they detect 
hadrons


2) When the gluon is emitted close to the parton its 
impossible to distinguish the two from each other 
In terms of the hadronic observable.  

Observable made from hadron(s)
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We need an observable definition which is insensitive to the 
number of emissions  

JET 

This observable is called a jet it has to do a couple of  jobs:


1) Split the differential cross section into individual pieces 
which are separately free of soft and collinear singularities 


2) Be equally applicable to patrons (theory) or hadrons 
(experiment/theory) to allow for a comparison of the two.  

QCD observables  
JET 
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Jet algorithms

Practically jets are defined through a jet algorithm, which takes in a clustering 
parameter (which will broadly define the size/scale of a jet) and an input event (made 
of partons, or hadrons) and returns a final state with a given number of jets.
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Note that there is more than one possible jet algorithm (any clustering which is 
insensitive to the soft/collinear emission problem will provide a well-defined result) 
and that the same initial event can have a different number of final state jets 
dependent on the chosen algorithm/clustering parameter chosen.  
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Jet algorithms

Practically jets are defined through a jet algorithm, which takes in a clustering 
parameter (which will broadly define the size/scale of a jet) and an input event (made 
of partons, or hadrons) and returns a final state with a given number of jets.

Note that there is more than one possible jet algorithm (any clustering which is 
insensitive to the soft/collinear emission problem will provide a well-defined result) 
and that the same initial event can have a different number of final state jets 
dependent on the chosen algorithm/clustering parameter chosen.  

It’s obviously important to compare theory/experiment with the same jet algorithm! 
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The JADE algorithm 

We’ll discuss jet algorithms for the LHC in part III. To complete our calculation here 
we introduce an older jet algorithm which is more appropriate for lepton colliders, the 
JADE algorithm.
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The JADE algorithm 

We’ll discuss jet algorithms for the LHC in part III. To complete our calculation here 
we introduce an older jet algorithm which is more appropriate for lepton colliders, the 
JADE algorithm.

Start with the two partons i and j with the minimum , where s is 
the com energy. 


yij = (pi + pj)2/s

Compare this to a pre-determined value . 
ycut

If  define the clustered object as the combined  and remove 
partons i and j. 


yij < ycut pμ
i + pμ

j

Repeat until no  the number of remaining objects is the number of jets. yij < ycut
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Jet fractions

The nice thing about lepton colliders and the jade algorithm is that we can analytically 
calculate jet fractions with our cross section, first we define , i.e. the total 
cross section is made out of either two or three jet events for us. 

σ = σ2 + σ3

Then we define jet fractions as   (and of course  at NLO). fi = σi /σ f2 = 1 − f3

With our definition of JADE algorithm our 
energy fractions are constrained as 
follows 

 and 0 ≤ xi ≤ 1 − ycut x1 + x2 > 1 + ycut

Blue- 3 jet area with 
JADE and ycut = 0.1
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Jet fractions at NLO 
1
σ0

d2σqqg

dx1dx2
=

CFαs

2π
x2

1 + x2
2

(1 − x1)(1 − x2)
With our definition of the cross section 

We can write a formula for  as follows, f3

f3 =
CFαS

2π ∫
1−y

0
dx1dx2Θ(x1 + x2 − 1 − y)

x2
1 + x2

2

(1 − x1)(1 − x2)
Where  if  and 0 otherwise.  Θ(z) = 1 z > 0

So that 

f3 =
CFαS

2π ((3 − 6y)ln
y

1 − 2y
+ 2 ln2 y

1 − y
+

5
2

− 6y −
9
2

y2 + 4Li2(
y

1 − y
) −

π2

3 )
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Plot of jet fractions and data.  
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OPAL We can then compare our jet fractions 
with data. (Here at one higher order in 
pert. theory) 

We see that for larger values of  
the perturbative expansion is doing a 
good job of describing the the data. 

ycut

At lower values the perturbation 
theory is unreliable, since we probe 
regions which are much more 
collinear. 
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Jets at the LHC 

Inspecting a typical 
event illustrates that our 
initial notion that a 
“parton becomes a 
hadron” is a bit naive, a 
“parton becomes a jet” 
is a bit better. But its 
clear just from visually 
looking at jet displays 
that an experimental jet 
contains multiple 
hadrons which move in 
an approximately 
collinear direction.    
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Jets at the LHC 

We would like to 
understand how to 
make a bridge from the 
world of partons, which 
enter the hard 
scattering process, to 
jets, which contain 
multiple hadrons. 

In order to do so we’ll 
need to understand the 
collinear behavior of 
QCD a little better. 
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Jets at the LHC 

However, to understand 
the QCD radiation 
pattern in the final state 
we will first have to 
address a more 
pressing question. 

How can we understand and 
make predictions for collisions 
involving hadrons? 



UNDERSTANDING 
HADRON 
STRUCTURE 
Deep Inelastic Scattering 
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Motivation 
Scattering of some kind of target off a hadron or nucleus makes up a HUGE amount of 
particle and nuclear physics. 

We are either trying to learn more about the hadrons/QCD itself, or are using the 
hadron as a source of energy/recoil to observe some other hard scattering event. 
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 collidersep

For modern particle 
physics, much of our 
most useful data comes 
from the HERA 
experiment, which ran at 
DESY in Hamburg from 
1992 to 2007

A next generation machine 
(primarily focussed on 
nuclear physics, but with 
great potential for overlap) 
is the Electron Ion collider 
which will run at 
Brookhaven National Lab
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Deep Inelastic Scattering 
Deep inelastic scattering (DIS) occurs when a lepton interacts with a hadron, 
traditionally we think about electron-proton scattering, but modern experiments also 
consider different possibilities. 
DIS can be expressed in terms of the following variables:












 

Q2 = − q2

M2 = p2

ν = p ⋅ q

x =
Q2

2ν
y =

q ⋅ p
k ⋅ p
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Deep Inelastic Scattering 
Deep inelastic scattering (DIS) occurs when a lepton interacts with a hadron, 
traditionally we think about electron-proton scattering, but modern experiments also 
consider different possibilities. 
DIS can be expressed in terms of the following variables:












 

Q2 = − q2

M2 = p2

ν = p ⋅ q

x =
Q2

2ν
y =

q ⋅ p
k ⋅ p

Most important 
variables 
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Structure functions  

Structure Functions  parameterize our ignorance about 
the detailed form of the proton, and instead formulate a general 
interaction which respects current conservation. 

Fi(x, Q2)
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Structure functions  

Structure Functions  parameterize our ignorance about 
the detailed form of the proton, and instead formulate a general 
interaction which respects current conservation. 

Fi(x, Q2)

For instance, for charged lepton scattering  the 
cross section can be written as follows (this if for a EM 
current with )

lp → lX

Q2 < M2
Z

d2σ
dxdy

=
8πα2ME

Q4 ( 1 + (1 − y)2

2 ) 2xFem
1 + (1 − y)(Fem

2 − 2xFem
1 ) −

M
2E

xyFem
2
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Bjorken Limit 

An interesting limit occurs when we take  with  fixed. This is called 
the Bjorken limit. In this limit the structure functions are found to have an 
approximate scaling law, they depend on only the dimensionless variable 

Q2, ν → ∞ x

x

Fi(x, Q2) → Fi(x)

This scaling is evidence for point like particles within the proton (i.e. there is no 
further scale  inducing a dependence on the ratio ). Q0 Q/Q0
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Evidence for Bjorken Scaling 
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The Parton Model 

Motivated by Bjorken scaling we can introduce a simple model of the proton which will 
form the foundation for our study with QCD 

We begin taking an “infinite momentum frame” in which the proton is moving very fast 
, with   pμ ≈ (P,0,0,P) P > > M

The photon scatters off a pointlike quark which is moving parallel to the proton and 
carries a momentum fraction . pq = ξp

d2σ
dxdQ2

=
4πα2

Q4 [(1 + (1 − y)2) F1 +
(1 − y)

x
(F2 − 2xF1)]
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The Parton Model 

Now we can compute this process at lowest order since its just an electron scattering 
off a quark . e−(k) + q(pq) → e−(k′￼) + q(p′￼q)
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The Parton Model 

Now we can compute this process at lowest order since its just an electron scattering 
off a quark . e−(k) + q(pq) → e−(k′￼) + q(p′￼q)

The spin averaged ME is of course a staple of intro QED lectures 

∑ |ℳ |2 = 2e2
q

̂s2 + ̂u2

̂t2

The hats remind us that we are talking about quark (not proton) 
momentum, i.e. .  ̂s = (k + pq)2 = (k + ξp)2
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The Parton model ∑ |ℳ |2 = 2e2
q

̂s2 + ̂u2

̂t 2

The differential cross section for 2 2 scattering is→

d ̂σ
d ̂t

=
1

16π ̂s ∑ |ℳ |2

So our only job is to re-write the Mandelstam invariants in terms of the DIS variables 
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The Parton model ∑ |ℳ |2 = 2e2
q

̂s2 + ̂u2

̂t 2

The differential cross section for 2 2 scattering is→

d ̂σ
d ̂t

=
1

16π ̂s ∑ |ℳ |2

So our only job is to re-write the Mandelstam invariants in terms of the DIS variables 

Namely ,   and . ̂t = − Q2 ̂u = ̂s(y − 1) ̂s = ξQ2/(xy)

So that  
d ̂σ

dQ2
=

2παe2
q

Q2 (1 + (1 − y)2)
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Doubly differential cross sections

d ̂σ
dQ2

=
2παe2

q

Q2 (1 + (1 − y)2)
d2σ

dxdQ2
=

4πα2

Q4 [(1 + (1 − y)2) F1 +
(1 − y)

x
(F2 − 2xF1)]

Comparing our two formula we see that we are nearly there, but our expression in terms of 
form factors is doubly differential. We can write ours in this form using kinematics  

 (p′￼q)2 = (pq + q)2 = q2 + 2pq ⋅ q = 0

So 
 −Q2 + ξ2ν = 0 ⟹ (1 −

ξ
x ) = 0

And, .  ξ = x
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∫
1

0
dxδ(x − ξ) = 1

d ̂σ
dxdQ2

=
4πα2

Q2 (1 + (1 − y)2)
e2

q

2
δ(ξ − x)

Writing 

We obtain  

d2σ
dxdQ2

=
4πα2

Q4 [(1 + (1 − y)2) F1 +
(1 − y)

x
(F2 − 2xF1)]

Doubly differential cross sections

From which we can read off our structure functions  

̂F2 = xe2
qδ(x − ξ) = 2x ̂F1

This suggests that  probes a quark constituent with momentum fraction   F2 ξ = x
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̂F2

Recalling our plot of the structure 
function we saw that it was a 
distribution in  rather than a delta 
function. So quarks carry a range of 
momentum inside the proton. 

x
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Naive Parton Model  

Putting this altogether we can define the naive Parton model 


1)  represents the probability that a quark  carries momentum fraction  
between  and 


2) The virtual photon scatters incoherently off the quark constituents

q(ξ)dξ q ξ
ξ ξ + dξ

The proton structure functions are then obtained by weighting the sum over all 
individual quark distributions 

 
F2(x) = 2xF1(x) = ∑
q,q

∫
1

0
dξq(ξ)xe2

qδ(x − ξ) = ∑
q,q

e2
q xq(x)
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Naive Parton model 

Cross sections for photonic, charged current and neutral current DIS are now written 
in terms of the unknown  functions, and given enough measurements these 
equations can be inverted to fit the probability distribution functions.  

q(x)
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Naive Parton model 

Cross sections for photonic, charged current and neutral current DIS are now written 
in terms of the unknown  functions, and given enough measurements these 
equations can be inverted to fit the probability distribution functions.  

q(x)

The simplest setup would be to use the quark model and to say that a proton consists of 
two up quarks and one down and have two distributions to fit  and . u(x) d(x)

However, this is too simplistic to do a good job of describing real data, since we know 
about pair creation in field theories, a more realistic setup would be to define the 
proton as having three valence quarks and an infinite sea of light  pairs. qq

When probed at a scale  the sea contains all quark flavors with . Q mq < < Q
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Valence and sea quarks in NPM

We define (at a scale  GeV))  O(1









u(x) = uV(x) + S(x)
d(x) = dV(x) + S(x)
S(x) = u(x) = d(x) = s(x) = s(x)

We also impose the following sum rules 

  and  ∫
1

0
dx uV(x) = 2 ∫

1

0
dx dV(x) = 1
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Total momentum

It’s interesting to consider the following total 

P∑ q = ∑
q

∫
1

0
dx x(q(x) + q(x)) = ∫

1

0
dx x(uV(x) + dV(x) + 6S(x))



35

Total momentum

It’s interesting to consider the following total 

P∑ q = ∑
q

∫
1

0
dx x(q(x) + q(x)) = ∫

1

0
dx x(uV(x) + dV(x) + 6S(x))
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P∑ q ≈ 0.5
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Total momentum

It’s interesting to consider the following total 

P∑ q = ∑
q

∫
1

0
dx x(q(x) + q(x)) = ∫

1

0
dx x(uV(x) + dV(x) + 6S(x))

Experimentally we find . So where is the missing momentum of the 
proton?? 

P∑ q ≈ 0.5

The GLUON! And gluons carrying a whopping fraction of the total momentum of the 
proton. 
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A modern PDF set

Here’s the CT14 PDF set (taken from the black book) , at Q2 = 2GeV2



UNDERSTANDING 
HADRON 
STRUCTURE 
Parton Model from Field Theory 
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Hadronic tensor 

Previously we calculated in the infinite momentum frame, however we can formulate 
the problem covariantly too. We introduce the hadronic tensor  which the matrix 
element squared is proportional to, i.e.   

Wμν

|ℳ |2 ∝ LμνWμν

Here  is the leptonic tensor and can be calculated once and for all  Lμν

 Lμν = 4e2(kμk′￼ν + kμk′￼ν − gμν(k ⋅ k′￼))

We can’t write down such a nice form for the hadronic piece, but we can define a 
tensor which is consistent with EM current conservation q ⋅ W = 0

Wμν(p, q) = (−gμν +
qμqν

q2 ) W1(x, Q2) + (pμ +
1
2x

qμ) (pν +
1
2x

qν) W2(x, Q2)
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Hadronic tensor 

We can relate the hadronic tensor to our em structure functions defined in the last 
section 



 

F1(x, Q2) = W1(x, Q2)
F2(x, Q2) = νW2(x, Q2)

ν = p ⋅ q

Next we introduce the following vectors  and a two-dimensional transverse vector 
  defined such that 

p, n,
kT

p2 = n2 = n ⋅ kT = p ⋅ kT = 0

If we ignore the mass of the proton we can identify  as the incoming momentum of 
the target   

p
pμ = (P,0,0,P)

Then  n = 1/(2P)(1,0,0, − 1)
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Hadronic tensor 

Our vectors are useful since they project out structure functions, 
   and    nμnρWμρ = νW2 = F2 pμpρWμρ = ν/(4x2)(νW2 − 2xW1) = ν/(4x2)FL

 is then obtained from the above “handbag” diagram Wμν

Wμν = e2
q ∫

d4k
(2π)4 [γμγρ(k + q)ργν]ij

[B(k, p)]ji
δ((k + q)2)
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Hadronic tensor Wμν = e2
q ∫

d4k
(2π)4 [γμγρ(k + q)ργν]ij

[B(k, p)]ji
δ((k + q)2)

In terms of our basis vectors kμ = ξpμ +
k2 + k2

T

2ξ
nμ + kμ

T

Such that the delta function becomes  

δ((k + q)2) = δ(k2 + 2ξν − 2qTkT + q2)

Our Naive Parton model is recovered in the limit where the virtuality and 
transverse momentum tend to zero, i.e.  and  so that k2 → 0 kT ⋅ qT → 0

δ((k + q)2) ≈ δ(2ξν − Q2) =
1
2ν

δ(ξ − x)
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Hadronic tensor in NPM limit 

F2 =
e2

q

2 ∫
d4k

(2π)4
nσnμ [γμγρ(k + q)ργσ]ij

[B(k, p)]ji
δ(ξ − x)

Our Naive Parton model is recovered in the limit where the virtuality and 
transverse momentum tend to zero, i.e.  and  so that k2 → 0 kT ⋅ qT → 0




     


F2 = xe2
q ∫

d4k
(2π)4

nσ [γσ]ij [B(k, p)]ji
δ(ξ − x)

= e2
q xq(x)
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Hadronic tensor in NPM limit 

All we really have done so far is a more formal definition of our quark probability 
distribution function from a hadronic point of view. 

 q(x) = ∫
d4k

(2π)4
nμTr(γμB(k, p))δ(ξ − x)

At this order we restore Bjorken scaling since the structure functions depend only a 
single variable  x

F2(x, Q2) → F2(x)

If we had calculated  instead we would have found that  
which vanishes in the Bjorken limit as expected. 

FL = F2 − 2xF1 FL ∝ ν
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Departure from Bjorken scaling 

To say that Bjorken scaling holds 
generally would be a pretty weak 
statement! 

While the larger-x behavior is 
flatter, as we go to smaller x its 
clear that there is a  
dependence and scaling is 
violated. 

Q2
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QCD and the Parton model 

QCD breaks Bjorken scaling by allowing for emissions of gluons which do not have 
small transverse momentum .  kT

Let’s think about the emission of a gluon in our diagrams 
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QCD and the Parton model 

At LO this is the calculation we have already performed in our notation 

̂F2(x) = e2
qδ(1 − x)

The hat reminds us that we are talking about the structure function for a quark rather 
than a proton and here . ξ = 1
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The NLO handbag

There are 4 contributions when we square up the contributions with an emitted gluon. 

Focusing on the first diagram and writing  the final state 
phase space is 

γ*(q) + q(p) → q(r) + g(l)

 dΦ2 = ∫
d4r

(2π)4

d4l
(2π)4

δ+(r2)δ+(l2)(2π)4δ(4)(p + q − r − l)
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 dΦ2 = ∫
d4r

(2π)4

d4l
(2π)4

δ+(r2)δ+(l2)(2π)4δ(4)(p + q − r − l)

Tidying up the phase space.  

The NLO handbag

 dΦ2 =
1

4π2 ∫ d4kδ+((p − k)2)δ+((k + q)2)

And writing kμ = ξpμ +
k2

T − |k2 |
2ξ

nμ + kμ
T

We can ultimately write   

dΦ2 =
1

16νπ2 ∫ dξ∫ d(k2)d(k2
T)dθδ(k2

T − (1 − ξ) |k2 | )δ (ξ − x −
|k2 | + 2qT ⋅ kT

2ν )
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The NLO handbag

The matrix element can be calculated with the usual techniques. Projecting out  , 
and spin-averaging we have 

F2

 
1

4π
nμnρ ∑ |ℳ |2

ρσ =
8e2

qαS

|k2 |
ξP(ξ)

Where  is know as the splitting function P(ξ)

P(ξ) = CF
1 + ξ2

1 − ξ
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dΦ2 =
1

16νπ2 ∫ dξ∫ d(k2)d(k2
T)dθδ(k2

T − (1 − ξ) |k2 | )δ (ξ − x −
|k2 | + 2qT ⋅ kT

2ν ) 1
4π

nμnρ ∑ |ℳ |2
ρσ =

8e2
qαS

|k2 |
ξP(ξ)

Using the phase space delta functions to eliminate the  and  integrations and 
integrating the spin-averaged matrix element over the phase space we get the 
following definition for 

kT θ

̂F2

̂F2 = e2
q

αS

2π2 ∫
2ν

0

d |k2 |
|k2 | ∫

ξ+

ξ−

dξ
ξP(ξ)

(ξ+ − ξ)(ξ − ξ−)

Where ξ± = x + z − 2x ± 4x(1 − x)z(1 − z)

And  z = |k2 | /(2ν)
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Divergences in ̂F2

̂F2 = e2
q

αS

2π2 ∫
2ν

0

d |k2 |
|k2 | ∫

ξ+

ξ−

dξ
ξP(ξ)

(ξ+ − ξ)(ξ − ξ−)

 is logarithmically divergent as , and needs regulation, for 
simplicity we’ll use a cutoff .  

̂F2 k2 → 0
κ2

̂F2 = e2
q

αS

2π2 ∫
2ν

κ2

d |k2 |
|k2 | ∫

ξ+

ξ−

dξ
ξP(ξ)

(ξ+ − ξ)(ξ − ξ−)

So that the regulated integral is 
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Divergences in ̂F2

As  we have  so   k2 → 0 z → 0 ξ± = x + z − 2x ± 4x(1 − x)z(1 − z) → x

̂F2 = e2
q

αS

2π2 ∫
2ν

κ2

d |k2 |
|k2 | ∫

ξ+

ξ−

dξ
ξP(ξ)

(ξ+ − ξ)(ξ − ξ−)

Taylor expanding the numerator and using 

∫
ξ+

ξ−

dξ
(ξ+ − ξ)(ξ− − ξ)

= π

We find the following logarithmically divergent  pieces  

̂F2 |div = e2
q

αS

2π
xP(x)∫

2ν

κ2

d |k2 |
|k2 |

= e2
q

αS

2π
xP(x) ln ( 2ν

κ2 )



53

(Almost) Total ̂F2

So far we have looked at one contributing diagram out of four, but it turns out that only 
this diagram contributes a log in . We can therefore skip some details and write the 
total quark structure function as (noting ) 

Q2

ln 2ν = ln Q2 − ln x

̂F2 = e2
q x δ(1 − x) +

αS

2π
P(x)ln ( Q2

κ2 ) + C(x)

Lots to unpack here, but the first and most important message  is that beyond 
leading order the structure function is  dependent. And Bjorken scaling is 
broken by logarithms of 

Q2

Q2



54

(Almost) Total ̂F2

WAIT! Didn’t we forget that there are virtual contributions too? 

Yes (“we”) did. What about corrections like the diagram here? 

However, since the virtual corrections share the 
LO topology (phase space) they will contribute a 
term proportional to  δ(1 − x)
They can be accommodated by making the change 

 P(x) → P(x) + Kδ(1 − x)
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Fixing K

If we had a quiet afternoon we could calculate , however we can actually get 
an answer even quicker by noting (or being told that) the integral over the total 
(modified)  should vanish (this ensures baryon number conservation if 
you’re interested) 

K

P(x)

As a result we write 

P(x) = CF ( 1 + x2

(1 − x)+
+

3
2

δ(1 − x))
Were the plus distribution is defined as follows. 

 ∫
1

0
dx

f(x)
(1 − x)+

= ∫
1

0
dx

f(x) − f(1)
1 − x

And .  
1

(1 − x)+
=

1
1 − x

, 0 ≤ x < 1
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(Actual) Total  and ̂F2 F2

̂F2 = e2
q x δ(1 − x) +

αS

2π
P(x)ln ( Q2

κ2 ) + C(x)

Using our modified splitting function the result from before is now accurate to  αS

What about the whopping great singularity as we formally take .

 This singularity arises when the gluon is emitted collinearly  to the quark. 

κ2 → 0

To go from quark to proton we convolute our quark structure function with the 
distribution of quarks in the proton q0(ξ)

F2(x, Q2) = e2
q x∑

q,q

q0(x) +
αS

2π ∫
1

x

dξ
ξ

q0(ξ) P ( x
ξ ) ln ( Q2

κ2 ) + C ( x
ξ )
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Infrared safety 

At this stage you might be fairly annoyed with me, or at least confused. 

In the last section we saw how the process  jets, involved a cancellation 
between virtual and real contributions to render the whole thing finite. Why 
doesn’t this happen here in this very similar process?  

γ* → 2
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Infrared safety 

The difference lies in the fact that we can cluster the final state in the former 
case into a jet. The jet has good properties and is safe in the IR limits. If we 
talked about final state observables associated with just the quark we would run 
back into IR issues.   

In our calculation there is no clustering, the photon CAN distinguish the difference 
between a quark and a quark-gluon collinear pair with the same momentum. 
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Renormalization  F2(x, Q2) = e2
q x∑

q,q

q0(x) +
αS

2π ∫
1

x

dξ
ξ

q0(ξ) P ( x
ξ ) ln ( Q2

κ2 ) + C ( x
ξ )

We solve the issue by renormalization. In the same way as we think of the bare 
coupling as being an unmeasurable theoretical construct, we think about  
as a bare distribution function. We define a renormalized distribution as follows, 

q0(x)

q(x, μ2
F) = q0(x) +

αS

2π ∫
1

x

dξ
ξ

q0(ξ) P ( x
ξ ) ln ( μ2

F

κ2 ) + C ( x
ξ )

Then 

F2(x, Q2) = e2
q x∑

q,q

q(x, μ2
F) +

αS

2π ∫
1

x

dξ
ξ

q(ξ, μ2
F) P ( x

ξ ) ln ( Q2

μ2
F ) + 𝒪(α2

s )
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Factorization scale and scheme 

The factorization scale  plays a similar role to the renormalization scale , 
we can think of it as the scale at which the long-range IR physics is absorbed 
into the proton. Some things to note: 

μF μR

• The distribution  cannot be calculated from first principles in perturbation theory (although 
possibly with the lattice) since it contains non-perturbative long-range corrections. 


• Effectively we have factorized the non-perturbative long-range physics and the short-range 
perturbative physics which depends on large momentum transfers. This type of factorization occurs 
beyond NLO and is vital for our ability to calculate cross sections for scattering processes. 


• We chose to define our renormalized functions with the full finite piece  such that this was all 

absorbed into . This was a choice not a requirement. Like in UV physics this choice is 
referred to as a scheme. 

q(x, μF)

C(x /ξ)
q(x, μF)
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Factorization scheme. 

q(x, μ2
F) = q0(x) +

αS

2π ∫
1

x

dξ
ξ

q0(ξ) P ( x
ξ ) ln ( μ2

F

κ2 ) + C ( x
ξ )

The choice we made is referred to as the DIS scheme. A more common scheme 
for general collider physics is the  scheme in which only the divergent piece 
and a ubiquitous  is absorbed into  

MS
ln(4π) − γE qMS(x, μF)

Once chosen, a scheme must be used in all cross sections, note that partonic 
cross sections will be different in different schemes. 
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Lecture 2 summary 

• We saw how by defining a suitable jet algorithm we could meaningfully describe collider data with theoretical 
predictions. Jets must be defined in such a way as to preserve the delicate IR structure of a theory. 


• Structure functions can be used to parametrize our ignorance of the composite nature of hadrons. They are 
constrained only by conservation laws of the theory and Lorentz structure. 


• Bjorken scaling predicts that structure functions should be independent of  at fixed  (for large enough ). We 
observe some regions in which scaling approximately holds, but in general scaling is violated. 


• We understood scaling violation as arising from emissions of gluons in the full QCD theory. 


• Initially we computed bare parton distribution functions, these require renormalization to render predictions finite. 
The scale at which this renormalization is performed is called the factorization scale, and sets the scale at which 
soft physics is absorbed into the proton. 

Q2 x Q

We’ve covered a lot today. 


