Towards a Muon Collider

Karri Folan DiPetrillo University of Chicago 25 July 2024

Why we need a new collider

The physics case for 10 TeV

Open questions in particle physics

About the Standard Model

What is the nature of the Higgs Boson & electroweak symmetry breaking?

Karri Folan DiPetrillo

And the observed universe What is dark matter? What causes baryogenesis?

Microscopic nature of the higgs

Is there new physics preventing m_h from being pulled up to Plank scale?

Karri Folan DiPetrillo

Data & theory suggest strongly coupled particles > 1 TeV

4

Electroweak symmetry breaking

Was there a first order phase transition? Is electroweak symmetry restored at high temperatures? Requires measuring Higgs self-coupling with few % uncertainty

Producing enough multi-Higgs events is only possible at a 10 TeV scale collider

Dark Matter

We've yet to probe minimal WIMPs up to thermal targets

Karri Folan DiPetrillo

Definitive observation & characterization would require a multi-TeV scale collider

Why muons are a promising path to the 10 TeV scale

& add unique physics opportunities

What we should build

Traditional Paradigm

Use our favorite, readily available particles

large mass means higher energies achievable composite: colliding quarks and gluons. carry a fraction of proton momentum

high rate of "messy" backgrounds

Karri Folan DiPetrillo

fundamental particles = "clean" collisions small mass = synchrotron radiation $\sim 1/m^4$

Precision

Energy

How to get to higher energies

For a fixed technology → go bigger

 $E_{\text{beam}} \sim 0.3 \cdot R \cdot B_{\text{dipole}}$

For 100 TeV pp-collisions

LHC NbTi	8 T	190 km
Record NbSn3	15 T	100 km
Future HTS	20 T	80 km

Or take a risk on new technology?

- Energy breakthroughs require leaps in technology & fundamentally new concepts
- Even with next gen magnets we're pushing the limits of what is feasible with protons
 - Tunnel length
 - Power consumption

Costs scale with both!

Karri Folan DiPetrillo

 $P \sim \frac{(E/m)^4}{1}$ beam

a fixed target accelerator Equivalent energy of

10

Why collide muons?

Break the traditional paradigm of larger and larger e+e- and hadron colliders massive fundamental particles = compact, power, and cost-efficient

Two colliders in one

Karri Folan DiPetrillo

Energy reach & precision electroweak physics in same machine

More complicated than 10 TeV $\mu\mu \sim 100$ TeV pp

 $m_L \sim \sqrt{s_{\mu\mu}/2}$

Karri Folan DiPetrillo

13

Example of Direct reach Supersymmetry

MuC: pair-production up to $\sqrt{s/2}$ FCC-hh: better for stops (color charge) But, most realistic models have TeV scale sleptons/electroweakinos

Example of Indirect Reach: Higgs Compositeness

Diboson & di-fermion final states MuC: sensitivity scales with \sqrt{s} FCC-hh: lower effective parton luminosity e+e-: negligible effects visible

Karri Folan DiPetrillo

2303.08533

15

Electroweak precision

$\geq 10^7$ single higgs events \rightarrow competitive with e+e- Higgs Factories ~10k di-higgs events \rightarrow self-coupling competitive with 100 TeV pp

<i>к</i> -0	HL-	LHeC	HE-	LHC		ILC			CLIC		CEPC	FC	C-ee	FCC-ee/	$\mu^+\mu^-$
fit	LHC		S2	S2'	250	500	1000	380	1500	3000		240	365	eh/hh	10000
κ_W	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14	0.11
κ_Z	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12	0.35
κ_g	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49	0.45
κ_γ	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29	0.84
$\kappa_{Z\gamma}$	10.	-	5.7	3.8	99 *	86*	$85\star$	$120\star$	15	6.9	8.2	81*	$75\star$	0.69	5.5
κ_c	-	4.1	-	-	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95	1.8
κ_t	3.3	-	2.8	1.7	—	6.9	1.6	-	—	2.7	-	_	—	1.0	1.4
κ_b	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43	0.24
κ_{μ}	4.6	—	2.5	1.7	15	9.4	6.2	$320\star$	13	5.8	8.9	10	8.9	0.41	2.9
$\kappa_{ au}$	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44	0.59

O(100) GeV scale SM physics

foward muons/neutrinos

Karri Folan DiPetrillo

And we can test *origin* of deviations!

The perfect neutrino beam

Equal numbers of e/μ (anti-)neutrinos Precisely known energy spectra & intensity

- At low energy:
 - precision cross sections
 - sterile neutrino searches
 - δ_{CP} , Δm^2_{31} , θ_{13} , θ_{23} , v_{τ} appearance
 - Over constrain PMNS paradigm
- At high energy: not fully prepared to say
- An appealing future after Dune/Hyper-K?

Karri Folan DiPetrillo

2203.08094

Realistic Constraints?

Defer to accelerator experts

On the Feasibility of Future Colliders: Report of the Snowmass'21 Implementation Task Force

Thomas Roser,¹ Reinhard Brinkmann,² Sarah Cousineau,³ Dmitri Denisov,¹ Spencer Gessner,⁴ Steve Gourlay,^{5,6} Philippe Lebrun,⁷ Meenakshi Narain,⁸ Katsunobu Oide,⁹ Tor Raubenheimer,⁴ John Seeman,⁴ Vladimir Shiltsev,⁶ Jim Strait,^{5,6} Marlene Turner,⁵ Lian-Tao Wang.¹⁰

Karri Folan DiPetrillo

- Energy and Luminosity Reach, and Achievable Science
- Size, Complexity, and Environmental Impact
- Technical Risk and Technical Readiness
- Parametric Cost Estimates and Schedule

18

The verdict

- e+e- Higgs Factories "(nearly) shovel ready"
- For 10 TeV scale colliders
 - We don't have the technology today & we're not ready to make any decisions
 - We should begin R&D for $\mu^+\mu^-$ AND pp colliders as soon as possible
- "We urge to give high priority to the R&D topics" aimed at the reduction of the cost and the energy consumption of future collider projects"

2208.06030

Collider	√s (TeV)	Tunnel (km)	Power (MW)	Cost (\$B)	Time to start (yrs
ILC e+e-	0.24	20	140	7-12	<12
FCC-ee	0.24	100	290	12-18	13-18
μ-3	3	10	230	7-12	19-24
CLIC	3	50	550	18-30	19-24
µ-10	10	16	300	12-18	>25
FCC-hh	100	100	560	30-50	>25

*Cost without contingency/escalation **Technically limited timelines ***No staging assumed

Can we build it

Technical challenges posed by the muon lifetime

The Challenge

Muon lifetime τ =2.2 µs

Need to produce, cool, accelerate, and collide muons before they decay

21

Design requirements

Depends on energy, physics goals, and cross-sections Goal: measure di-higgs cross-section (few fb) with few % uncertainty

Map these needs back on to proton source, cooling, etc

Karri Folan DiPetrillo

= 1 and maximize N_{μ} per bunch	~2·10 ¹² Nµ
ze circumference, maximize f	30 kHz
ze $\sigma_x \sigma_y$ beam size, aim for	~O(10) µm
ct muons every βγτ	100 ms

22

Proton driver

Goal is to deliver ~2e14 protons at 5-8 GeV and rate of ~10 Hz

Requirements:

- Proton source: 1-2 MW
- Accumulator & compressor: ~2ns bunches
- Target: shifted focus from liquid to solid (graphite)
- 20 T capture solenoid

Synergies:

- Spallation neutron and neutrino sources
- Charged lepton flavor violation experiments

Karri Folan DiPetrillo

2209.01318

Ionization Cooling

Very rough concept: progressively reduce transverse momentum with low density absorber and restore lost longitudinal momentum with RF cavities

Status

- MAP end-to-end cooling design & simulation with realistic constraints within a factor of 2 of requirements
- MICE: Demonstration of single 4D cooling element
- Muon g-2: Demonstration of longitudinal cooling
- FNAL MuCool Test: RF-cavities in B-fields
- IMCC: improved lattice, test stands, demonstrator designs in progress

6D Cooling demonstrator critical if we want to move forwards with a Muon Collider

Karri Folan DiPetrillo

2209.0

)	1	3	1	8

Accelerator and Collider Rings

Accelerator

- Normal conducting fast ramping dipoles: ~1.5 T in around 1 ms
- Challenge: max field & power supplies

Collider:

- Circulate two bunches
- Re-fill when depleted
- Minimize size to maximize N_{collisions}
- 10 km ring, 16 T dipoles, ~2000 turns
- Large aperture magnets (15-20 cm) to accommodate shielding & prevent quenches

2209.01318

Neutrino Flux

Challenge: TeV neutrinos interacting between the beam and you

Mitigation strategies exist!

- Depth 200 m
- Minimize field free regions
- "Beam wobbling" with B-field and/or high precision movers
 - ~1 cm 10x reduction
 - ~10 cm 100x reduction
- Better cooling/final focusing

Can we build it?

Recent progress in design and technology put a muon collider on a 20 year "technically limited" timeline!

Technical challenges posed by beam induced backgrounds

Can we do physics

Collision environment

Circulate two bunches & re-fill when depleted Time between collisions: t=L/c = 30 kHzMuons survive ~2000 turns

Beam induced background Decays w/in 20 m of interaction point: ~10⁷ Total energy of decay products: ~ 50 EeV

Karri Folan DiPetrillo

1000 x lower event rate than LHC

N_{decay} decrease with Energy

Total Edecay doesn't depend on Energy

Unique need: Tungsten Nozzles

Suppress high energy component of <u>beam</u> induced background

Tradeoff: increase in low energy neutrons

What's left over

Compared to HL-LHC

Up to ~10 x hit density

~1/1000 event rate

Similar dose & fluence

100 TeV pp ~3 orders of magnitude worse ~10¹⁸ MeV-neq /cm²

Muon Co HL-LH

	Maximum	Dose (Mrad)	Maximum Fluence (1 MeV-neq/cm ²)		
	R=22 mm	R=1500 mm	R=22 mm	R=1500 mm	
ollider	10	0.1	10^{15}	10^{14}	
HC	100	0.1	10^{15}	10^{13}	

Background properties

With standard nozzle ~10⁸ low momentum particles per event But this background looks very different from signal!

Another key background

Incoherent e+e- production from beamstrahlung

these particles are low energy and come from the IP a strong magnetic field can prevent many from interacting with the detector

The Detector

Baseline design & next steps

Baseline design for 3 TeV

Major outcome of IMCC/Snowmass

Beam Induced Background with FLUKA Full simulation physics studies

Rest of talk: what we've learned and next steps

Karri Folan DiPetrillo

2303.08533

Backgrounds in the tracker

Occupancy most challenging for the innermost layers of the tracker Optimize for <1% & leverage techniques from HL-LHC upgrades

Only readout hits in ~1 ns time window Only select hits in $\pm 3\sigma$ time window $\pm^3 t$

36

Tracker design & needs

Large area & highly granular ~100 m² of silicon sensors ~ 2B channels

Challenges: Power consumption Readout

Sub detector	Size	Timing
Vertex Detector	25 x 25 µm²	30 ps
Inner Tracker	50 µm x 1 mm	60 ps
Outer Tracker	50 µm x 10 mm	60 ps

Calorimeter design & needs

Current design assumes

ECAL: Silicon+Tungsten 5x5 mm² cell size

HCAL: Iron+Scintillator 30x30 mm² cell size

Timing resolution (~100 ps) + Longitudinal segmentation

Karri Folan DiPetrillo

Room for new ideas

e.g. Crilin, Calvision

Trigger/DAQ

Target "streaming" readout

- Total readout rate = same as the CMS HL-LHC max HLT input rate •
- Reading out all BIB hits requires increased cabling, cooling •
- Pushes the challenge from trigger to <u>on-detector processing</u> •
- Event rate $\sim 30 \text{ kHz} \rightarrow \text{plenty of time to process full event off detector}$ •

	Readout Window	E Threshold	Hit Size	Total Rate
Tracker	1 ns	n/a	32 bits	~40 Tb/s
ECAL	15 ns	0.2 MeV	20 bits	~30 Tb/s
HCAL	15 ns	0.2 MeV	20 bits	~3 Tb/s
Total				60 Tb/s

Work in progress: 10 TeV design

Need to grow the detector

Solenoid: Higher B-field & inner radius technically challenging

$$E_{\text{stored}} = \frac{B^2}{2\mu_0} \pi R^2 L$$

Need to reestablish expertise to build CMSstyle magnets!

Karri Folan DiPetrillo

Detector Magnet Workshop Summary by A. Bersani

Work in progress: Machine Detector Interface

Beam induced background highly dependent on nozzle configuration Systematic optimization in progress!

Work in progress: Map back to physics

Separate ZZ and WW fusion Reduce backgrounds Br($h \rightarrow invisible$) via m_{miss} Γ_h via inclusive rate

M. Forslund, P Meade M. Ruhdorfer, E. Salvioni, A. Wulzer P. Li, Z. Liu, K.F. Lyu

Karri Folan DiPetrillo

eg. to fully unlock higgs precision, is forward muon tagging possible?

Work in progress: Forward Muon Tagging

[cm]

Karri Folan DiPetrillo

 $\eta_{\rm max}$

B-field & path-length for momentum measurement? Effects of scattering/energy loss from ~2000 X₀ of Tungsten? What technology can withstand BIB?

See presentation @MDI workshop by D. Calzolari and M. Casarsa

The takeaway

Baseline detector design & full simulation studies demonstrate we can do physics With work in progress we can likely do even better :)

Higgs self-coupling

Karri Folan DiPetrillo

WIMPs/Disappearing track

Cue the excitement!

- Positive outcomes from latest European Strategy & US Planning processes
- Formation of International Muon Collider Collaboration (IMCC)
- "MuCol" Project Funded by EU
- US Muon Collider Collaboration forming soon
- Many dedicated meetings, ulletworkshops, and articles

particle accelerato ept emerges. Call it physicist

Karri Folan DiPetrillo

International UON Collider Collaboration

Draft Pathways to Innovation and Discovery in Particle Physics

As part of this initiative, we recommend **targeted collider R&D** to establish the feasibility of a **10 TeV pCM muon collider**. A key milestone on this path is to design a muon collider demonstrator facility. If favorably reviewed by the collider panel, such a facility would open the door to building facilities at Fermilab that test muon collider design elements while producing exceptionally bright muon and neutrino beams. By taking up this challenge, the US blazes a trail toward a new future by advancing critical R&D that can benefit multiple science drivers and ultimately bring an unparalleled global facility to US soil.

46

Conclusions

Strong Physics Case for a 10 TeV Muon Collider

- Energy and precision in a single machine
- Compact, power efficient, and US-hosted option •
- Interesting synergies & staging opportunities •
- No show stoppers identified, R&D should start now!

Do your homework & decide for yourself! •

- <u>Collider Implementation Task Force</u>
- International Muon Collider Collaboration \bullet
- <u>Towards a Muon Collider</u>

Backup

Karri Folan DiPetrillo

MuC has an edge in sensitivity when Z' is so heavy that only indirect effects can be measured

Beam induced background w/ FLUKA

Comparing occupancies at different energies

Karri Folan DiPetrillo

Multiple experts producing and validating BIB at 1.5, 3, and 10 TeV

Characterizing BIB contributions in tracker

eg. particle type: primary vs secondary electrons spatial origin: upstream vs downstream

Luminosity

Previous lepton colliders: Forward electrons from Bhabha scattering

Karri Folan DiPetrillo

Proposal to use central muons for μC Questions: Stats? Theory precision?

 $\sqrt{s}=1.5$ TeV, lumi = 1e34 Remaining events

Assuming a Snowmass year = 10^7 seconds $\mathcal{L}=1.25 \cdot 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ Total events: 213 K $\frac{\Delta \mathcal{L}}{\mathcal{L}} \sim \frac{1}{\sqrt{N}} = 0.002$

We'll need something else to monitor luminosity in real time

Towards a 10 TeV detector

Momentum Resolution

$$\left(\frac{\sigma_{p_{\rm T}}}{p_{\rm T}}\right) \sim \frac{p_{\rm T}}{BL^2} \frac{\sigma_{\rm point}}{\sqrt{N}}$$

Aim for 5-20% at 5 TeV \rightarrow 5 T solenoid, R \ge 1.5 m

B-meson decay length $\langle L \rangle \sim 100 \text{ mm} \times \left(\frac{E}{\text{TeV}}\right)$

Karri Folan DiPetrillo

Shower containment

Need to increase Calorimeter λ and X_0

Detector Magnet

Increasing B-field & inner radius technically challenging Requires Aluminum-reinforced NbTi/Cu

Need to reestablish expertise to build CMS style magnets!

Reconstruction

Works well! But is an active area of development

O(100) tracks per event after p_T,n_{hits}, quality of fit requirements

Photon and particle flow jet performance similar to hadron collider

Work in progress: Ideas for physics along the way

Straight sections = perfect neutrino beam Equal numbers of e/µ (anti-)neutrinos Precisely known energy spectra & intensity

Synergies with charged lepton flavor violation experiments

Karri Folan DiPetrillo

Low mass dark matter (sector) searches

55

Subsystem Design ↔ Technology needs

Need to define muon collider specific needs (strict & soft) to ensure technology converges Also a good way to strengthen community with instrumentation experts

BIB rejection with pixel cluster shapes C. Sellgren, Simone Pagan Griso

Karri Folan DiPetrillo

AC-LGADs - Irene Dutta