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Intro
• Machine learning is a broad and rapidly growing topic

• No way to cover all of it in just one lecture!

• Goals for today:

o Get a firm grounding in the basics

o Look at some cutting-edge HEP applications

• Everything in the middle is left as an exercise
for the listener

• Philosophical arguments about usage of “machine learning”
vs. “artificial intelligence” are also beyond the scope

o Practical consideration: funding agencies give you
money if you say “AI”
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ML-related categories (AI, CV, LG) in CS 
archive are about ~50% of total submissions

https://info.arxiv.org/about/reports/submission_category_by_year.html

https://info.arxiv.org/about/reports/submission_category_by_year.html


What is AI/ML?

• ML is function approximation:
 map inputs to outputs, →x ↦ → y
o → y = F(→ x) unknown, probably not analytic

→ try to find approximation → y ≈ F′(→ x; → w) by optimizing weights → w (in general, any parameters)
• Deep learning:
o Use thousands, even millions of weights
o Use many layers with intermediate features derived from inputs
 More “neurons” → more multiplications
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“AI is whatever hasn’t been done yet.”
– Douglas Hofstadter

The Neural Network Zoo

https://www.asimovinstitute.org/neural-network-zoo/


Deep Neural Networks
• Ingredients for a neural network (NN):

o “Architecture”: implementation of mathematical operations

 At least one layer with multiple nodes

– Multiple layers connected to each other → deep (DNN)

 For now: fully-connected network, also called multilayer perceptron (MLP) or feed-forward

o Data: set of input features →x and expected output values → y

o Objective: function to compare NN output with expected output

• Training a (D)NN:

o Modify node weights to minimize objective

• Seems simple enough…
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Comput. Meth. Appl. M. 353 (2019) 201

Features

Output

https://dx.doi.org/10.1016/j.cma.2019.05.019


Training
• Iteratively modify weights so F′ gets “closer” to → y (training data)

o “Closer” defined by objective, also called a loss function

o Use gradient descent to follow change in loss

• Gradient space is defined by the combination of NN architecture,
input data, and loss function

o Change any of these: change the gradients

o How to make sure our NNs generalize? We’ll come back to this…

• Several algorithms to perform gradient descent:

o Stochastic gradient descent (SGD), Adam (Adaptive Moment Estimation)

o Different approaches to learning rate (controls size of update iteration → step in gradient space)

o All rely on backpropagation
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hackernoon.com

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da


Backpropagation

• Forward pass: feed input data to current state of NN, multiply by weights, produce output

• Backward pass: compute gradient of loss function with respect to weights

o This tells us what step to take in gradient space

 i.e. how to modify the weights, in order to improve the loss function value

• Hidden complexity: “compute gradient”
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Automatic Differentiation
• Typical approaches to differentiation:

o Symbolic: accurate, but expensive

o Numerical: fast, but limited accuracy

• Autodiff is neither of these!

• Computational functions largely built from elementary 
mathematical operations (addition, multiplication)

• Exploit the chain rule to break down complicated 
derivatives into simple, known operations

o Only need local values, not global functions

• Example: find gradient of d with respect to a
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sidsite
This depicts “reverse mode” autodiff, 
which is used for backpropagation

https://sidsite.com/posts/autodiff/


Activation Functions
• Yet another hidden detail:
o What we’ve depicted so far is just a complicated way of writing down a linear regression:

multiplying and summing inputs
• To achieve universal function approximation, need nonlinearity
 Apply nonlinear functions to each layer
o Make sure they’re differentiable!

• Examples: 
o Rectified Linear Unit (ReLU)

tends to be preferred
 Fast to calculate, steeper than sigmoid

o Options like Leaky ReLU can be 
employed to keep negative side

o (more at Table of activation functions)
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Google

Inputs

Hidden Layer 1

Hidden Layer 2

Activation

Output

https://en.wikipedia.org/wiki/Activation_function%23Table_of_activation_functions
https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/anatomy


Loss Functions
• Typical tasks and their loss functions include:
o Classification: “is this event signal or background”?
 Binary cross-entropy (2-class problem, labels are either 0 or 1):

p ∈ {y, 1–y}, q ∈ {F′, 1–F′}
L(p,q) = –∑ p log q = –y log F′ – (1–y) log (1–F′)
– Minimizing BCE ↔ maximizing likelihood
 Categorical cross-entropy (multiclass problem):

σ(→z )i = ezi / ∑ezj → softmax: maps to (0,1) and ∑outputs = 1
L(p,q) = –∑ p log σ(q) = –log( eF′i / ∑eF′j )

o Regression: “what is the mass of these inputs?”
 Mean squared error:

L(F′, y) = 1⁄n ∑(F′ – y)²
 Huber loss: variation that reduces outlier impact

L(F′,y) = ⎰ 1⁄n ∑ ½(F′ – y)², |F′ – y| ≤ δ
⎱ 1⁄n ∑ δ[(F′ – y)² – ½δ], |F′ – y| > δ

HCPSS 2024 Kevin Pedro 9

MAE
MSE
Huber

https://api.semanticscholar.org/CorpusID:17940227

Receiver-Operator 
Characteristic (ROC)
w/ Area Under Curve 
(AUC)

top quark tagging
arXiv:1902.08570

better

https://api.semanticscholar.org/CorpusID:17940227
https://arxiv.org/abs/1902.08570


Statistical Validity
• Always be wary of overtraining: learning only the exact input training data rather than generalizing
• First defense:
o Reserve some data for validation and testing
 Validation data used to watch loss function behavior during training
 Test data used to evaluate performance after training
 These all must be independent to avoid bias!

o Can increase this to k-fold cross-validation
• More defenses:
o Early stopping: avoid over-optimizing once gradient descent starts to converge
o Batching: shuffle training data during each training period (epoch), compute loss in each batch
 Mini-batching: use random subset of data during each epoch

• General principle: regularization
o Vague term, but important concept
o Any change that encourages NN to generalize: can be in data, architecture, loss function, etc.
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Medium

Validation

https://medium.com/neural-network-nodes/overtraining-neural-networks-trends-vs-noise-e6e50aa5ef52


Universal Approximation Theorem
• Theoretically, even a single-layer NN can approximate any function

o …if infinitely wide

• Also theoretically, gradient descent should converge to a good minimum

o if objective is convex

• So we can be sure to get the right answer…

o if we have an infinite network, infinite data,
infinite training time, and everything is well behaved

• What should we do in the real world?

o Real training algorithms have various parameters that have to be optimized separately:
called “hyperparameters”
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wikipedia

https://en.wikipedia.org/wiki/Large_width_limits_of_neural_networks


Inductive Bias
• ML researchers’ goal is to see what NN can learn: try to minimize bias

• HEP researchers’ goal is to do physics

o It’s okay (and even advisable) to “help” the NN learn

• Like regularization, inductive biases can be added anywhere:

o Data: feature engineering

 Less necessary for NNs than other ML methods like BDTs

 But can still be important to inject physics knowledge

o Architecture:

 Introduce assumptions about how inputs are related and what computations should be performed
(going beyond MLPs)

o Loss functions:

 Enforcing physical constraints, preventing unwanted behavior
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Convolutional Neural Networks
• Convolution: combine neighboring pixels according to 

matrix of weights

• Translational invariance: apply same operation to each 
subset of data

• Locality: assumes that pixels only relate to their 
neighbors

• Feature engineering: automatically derive features at 
different levels of complexity (edges, corners, etc.)

 Application to image recognition started modern AI 
revolution in 2012 (AlexNet)
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towardsdatascience.com

towardsdatascience.com

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/image-classifier-cats-vs-dogs-with-convolutional-neural-networks-cnns-and-google-colabs-4e9af21ae7a8


towardsdatascience.com

Graph Neural Networks
• Generalize convolutions → message passing w/ graphs (nodes & edges)
o Derive new features for node xi using neighbors xj

o Can even assign features to edges

• Aside: recurrent networks (RNNs) previously used for language processing
o Now supplanted by “Transformers” that use “attention”
o Conceptually, these are just graphs
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arXiv:1801.07829

https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa
https://arxiv.org/abs/1801.07829


Transformers
• General idea: learn “importance” of each input for each other input
o Enables long-range communication between inputs

• Specific implementation: attention mechanism with query, key, value
o Apply query to keys, then compare to values
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Thinking like Transformer

The Illustrated Transformer

• In practice: Q, K, V are 
all learnable matrices

• Transformer combines 
multiple attention layers 
to encode inputs and 
then decode outputs
o “Embedding”:

represent token
as numerical value

The Annotated Transformer

https://srush.github.io/raspy/
http://jalammar.github.io/illustrated-transformer/
http://nlp.seas.harvard.edu/annotated-transformer/


Multiple Loss Terms
• Simplest approach: L = f(𝜃𝜃) + λg(𝜃𝜃)

o λ (relative weight) treated as a hyperparameter:
guess its value based on magnitudes of f and g, how much you want to control an effect, etc.

o In generalize, N–1 λ parameters for N loss terms

• Goal: find Pareto optimal solution such that any change to improve one criterion will degrade another

• Problems:

o Pareto front (set of all Pareto optimal solutions) shape is unknown (much like gradient space)

o Unclear relationship between λ values and loss values at Pareto front

• Underlying problem: no mathematical guarantee to be able to
optimize for two things at once!

• Instead: optimize for one thing with constraints on others

o Lagrange multiplier method, introduced in 1804
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Modified Differential Method of Multipliers
• Lagrange multiplier approach:

combined loss is L = f(𝜃𝜃) + λ(ε − g(𝜃𝜃)) + δ(ε – g(θ))²

o ε is the constraint on loss term g

o λ is now a learnable parameter

o δ: new hyperparameter for quadratic damping term
→ influences rate of convergence

• Need to use gradient ascent in λ to ensure critical points
are attractors rather than saddle points

Ensures convergence even for concave Pareto fronts!

o Constraints on loss terms are easy to interpret

o Mechanically sketch out Pareto front and pick
preferred location → no guessing!

• PyTorch implementation at github:crowsonkb/mdmm
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C. Cazzaniga

J. Degrave & I. Korshunova

https://github.com/crowsonkb/mdmm
https://www.engraved.blog/how-we-can-make-machine-learning-algorithms-tunable/


Application to Physics: Fast Simulation
• FastSim refinement: adjust high-level quantities from lower-quality fast simulation to better match 

high-quality (slow) full simulation

o Target: b-jet tagging discriminators

• Two loss terms:

o MSE (Huber): per-object comparison

o MMD: ensemble comparison

• MDMM balances optimally:

o Minimize MSE: bad MMD values

o Minimize MMD: still good MSE!

• Substantial improvement
in agreement w/ FullSim

• First known usage of MDMM in HEP!

18

arXiv:2309.12919
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https://arxiv.org/abs/2309.12919


Generative Models
 Common idea: learn probability density of inputs
• Implicit density estimation: Generative 

Adversarial Networks (GANs)
o Pros: fast
o Cons: can suffer from mode collapse, lack of 

convergence, etc.
• Exact density estimation: Normalizing Flows 

(NFs), Autoregressive models (ARs)
o Pros: accurate, fast in one direction
o Cons: poor scaling, slow in other direction

• Approximate density estimation: Variational
Autoencoders (VAEs), Diffusion Models (DMs)
o VAEs: fast, but limited quality
o DMs: high quality, but slow
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L. Weng

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Diffusion Models
• Learn to predict result from “noising process” that iteratively adds Gaussian noise to image

o Learn noise prediction function directly, or learn “score function” (gradient of probability density)

 Equivalent for variance-preserving score formulation

• Generate output from pure noise by iteratively removing noise using learned function

• Rapidly adopted for image generation in industry

• Let’s apply it to calorimeter showers!

o EM physics is compute-intensive

o Can also avoid geometry navigation in
calorimeter volume
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CaloChallenge

• Common datasets are crucial to compare different generative methods
• Many new methods developed for the challenge
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• CaloChallenge: first competition for 
generative ML for detector simulation

• Three public datasets provided:
1. Low granularity, irregular geometry 

(based on ATLAS calorimeter), photon 
& pion showers

2. Medium granularity, silicon-tungsten 
sampling calorimeter, electron showers

3. High granularity, otherwise same as #2

https://calochallenge.github.io/homepage/


CaloDiffusion

• Base architecture: U-net
o Skip connections ensure no loss of information

• Linear self-attention layers applied to each 
convolutional ResNet block
o Allows dimensionality reduction in z to handle 

longitudinal correlations in showers
• Cosine noise schedule for training
• Stochastic sampling algorithm for generation
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(M/N): # filters for datasets 1 & 2 / 3
Total parameters: ~520K / ~1.2M

• Objectives: (regression)
o Predict (normalized) noise or weighted average 

of noise and denoised image
• Aim for highest achievable quality first
o Then focus on improving speed
o Wrong answers can be obtained infinitely fast



Why Convolutions?
• Convolutions have many nice properties: (inductive bias)
o Spatial locality and translational invariance
o Shared weights → fewer parameters, better scaling
o Highly efficient on GPUs: spatial locality implies memory locality

• Ideally suited for computer vision with rectangular images
o Application to irregular geometries requires innovations

• Graph neural networks?
o Pro: natural representation for irregular geometries
o Cons: adjacency matrices consume substantial memory; operations less local/efficient; hard to 

generate arbitrary output (masking technique exists, but difficult to scale)
• Point clouds or transformers?
o Pro: no adjacency matrix consuming memory
o Con: discards useful geometric information, which then must be learned from (often sparse) inputs
 For generative applications, convolutions still have a lot to offer!
o And they can keep up with transformers when trained properly… e.g. arXiv:2310.16764
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(source)

https://arxiv.org/abs/2310.16764
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


• Particle showers are not invariant in r or z
o Provide r and z (layer) as extra per-pixel

channels (input features)
o Convolutions become conditional

Geometric Innovations
• Particle showers are invariant & periodic in φ
o Pad in φ so convolutions “wrap around”
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(source)

Shower image

Radial image

Layer image

 Conditional cylindrical convolutions
o Handle inherent features of particle detector geometry, distinct from rectangular images

https://indico.cern.ch/event/1159913/contributions/5062708/


Geometry Latent Mapping: GLaM

• Some calorimeters have different radial/angular bins in each layer
o Can’t directly apply convolutions, which require regular neighbor structure

• Learn forward and reverse embeddings to and from a regular geometry
o Simple matrices C (NxM) and D (MxN)
 C initialized to split or merge cells based on overlap between original and embedded geometries
 D initialized as Moore-Penrose pseudoinverse of C

• Inspired by “latent diffusion” approach (apply VAE, then apply diffusion in smaller latent space)
o But not necessarily lower-dimensional representation; actually higher-dimensional here
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Average Showers

• Top: Geant4; bottom: CaloDiffusion (photon showers)
o … or is it the other way around? Can you tell?
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[animated version]

https://www.dropbox.com/scl/fi/96j6yr4d4qedfv2au2ney/shower_evolution_final_v2.gif?rlkey=18v7j2fyfd57cqayd46ktjfmd&raw=1


Metrics
• How to compare quality of generative ML 

models?
• 1D histograms:
o e.g. separation power ‹S²(g,h)› = ½∑(g–h)²⁄(g+h)

o Can miss high-dimensional correlations
• Best category: integral probability metrics

o Wasserstein distance W1: F is set of all K-
Lipschitz functions
 Only works well in 1D, biased in high-D

o Maximum mean discrepancy (MMD): F is unit 
ball in reproducing kernel Hilbert space
 Depends on choice of kernel

o Fréchet distance: W2 distance between 
Gaussian fits to (high-D) feature space
 Features can be hand-engineered or obtained 

from NN activations
• Another interesting category: classifier scores
o Train NN to distinguish real vs. generated
o AUC score: range 0.5–1.0
o Log-posterior probability in multiclass case

• Fréchet Particle Distance most clearly 
distinguishes between two similar approaches
o see arXiv:2211.10295 for more details
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https://arxiv.org/abs/2211.10295


Metrics for CaloDiffusion
• Classifier AUC: train a binary classifier to distinguish between Geant4 and generative model
o 2 hidden layers, 2048 neurons each; 20% dropout after each layer
o Two flavors w/ different inputs: (incident particle energy included in both)
 Low-level: full showers (all voxels)
 High-level: energy in each layer, center of energy and shower width in η and φ

o Compared to CaloScore v2 (score-based diffusion model), (i)CaloFlow (normalizing flow)
• Integral probability metrics: Fréchet Particle Distance (FPD), Kernel Particle Distance (KPD)
o High-level shower features used as input

• CaloDiffusion wins in almost all comparisons, with very small distance values
o Generated showers almost indistinguishable from Geant4
o Further comparisons to come in CaloChallenge summary
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† Geant4 self-comparison values subtracted
† (0.008, 0.0005, 0.008, 0.011)

†



CaloChallenge Results

• Diffusion models and normalizing flows tend 
to have best performance

• However, diffusion models especially tend to 
be slower in inference
o Iterative process – multiple steps required to 

get highest accuracy
• Benefit of following industry trends: frequent 

papers with new methods to speed up diffusion 
models → easy to adopt in HEP
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C. Krause

https://indico.cern.ch/event/1253794/contributions/5588599/


CaloDiffusion: Areas for Improvement
• Deficit in total energy modeling

• Need 400 diffusion steps to get acceptable quality

o Still faster than Geant4 (~100s) w/ batching on GPU

• Fewer steps:

o Linear speed improvement

o But even less accurate in
this quantity
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Improvement: More Diffusion!
• Train LayerDiffusion to predict energy deposited per layer (1D diffusion)
o Negligible inference time (200 steps) compared to CaloDiffusion

• Normalize CaloDiffusion output based on LayerDiffusion
o Only if both models predict sufficiently non-zero deposited energy in a layer
 Substantial improvement in total energy modeling
• Number of CaloDiffusion steps can be reduced with no loss of quality
o 4× speedup for Dataset 2! (8× for Dataset 1 & improves low-energy pions)
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Model
(2, electrons)

AUC
(low / high)

FPD KPD E Ratio
Sep. Power

Orig.  (N = 400) 0.56 / 0.56 0.043 0.00010 0.0110
Layer (N = 400) 0.54 / 0.58 0.045 0.00005 0.0017
Layer (N = 100) 0.54 / 0.60 0.076 0.00030 0.0017

N = 400 N = 100

• More speedups proposed in arXiv:2401.13162

https://arxiv.org/abs/2401.13162


Computing for ML
• ML algorithms use a restricted set of operations (mostly matrix multiplications)

o Natural and easy to accelerate on “coprocessors” like GPUs (SIMD: single instruction, multiple data)

• Advent of GPU computing helped spur modern AI revolution

o Otherwise not feasible to perform backpropagation in deep NNs

• NN training is compute-intensive

o A100 GPUs deliver ~300 teraflops (TF32 tensor operations) with up to 80 GB of RAM

o Often training needs multiple A100s!

• Nevertheless, inference ultimately requires more compute

o Goal is to learn a generalized algorithm/function

o Therefore, trained NN will be applied to much more data
than was used in training

 Billions of events, at least
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Inference as a Service
• Most flexible approach to use coprocessors
o Abstract away specific computing elements:

client makes request, server delivers
o Example: ParticleNet 10–100× faster on GPU vs. CPU
 Algorithm latency becomes essentially invisible

with asynchronous calls in offline processing
 Can batch across events for optimal GPU utilization

→ maximize throughput
 Similar speedup for CaloDiffusion

• Demonstrated for CMS, protoDUNE, LIGO, analysis facilities
o Use any kind of chip with zero code changes!
 Including new “neuromorphic” chips: tensor processing units

(TPUs), intelligence processing units (IPUs), etc.
o Exploit GPU-based High Performance Computing (HPC) facilities
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https://arxiv.org/abs/2402.15366
https://arxiv.org/abs/2301.04633
https://arxiv.org/abs/2108.12430
https://arxiv.org/abs/2312.06838


Conclusions
• AI/ML has applications throughout HEP
o Complicated, but understandable
o Remembering basic principles will help you debug unexpected behavior
o A Recipe for Training Neural Networks (Karpathy) is a useful guide

• Many of these applications were not discussed at all today!
o Clustering/tracking
o Unsupervised learning: anomaly detection
o Even classification given short shrift
o Check out the HEPML LivingReview to learn more about these

• Generative ML is an especially promising application
o Eventually produces a differentiable simulation

→ can then be part of broader optimization
• The future of AI/ML is wide open
o All of this may be outdated in just a few years!
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Generated by SDXL 1.0 w/ prompt: “A 
GEANT4 simulation of a pion shower 
with energy 100 GeV in the Compact 
Muon Solenoid High Granularity 
Calorimeter at the CERN Large Hadron 
Collider, a particle physics experiment”

https://karpathy.github.io/2019/04/25/recipe/
https://iml-wg.github.io/HEPML-LivingReview/
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