

Calorimetry Lecture 2

Jim Hirschauer (Fermilab) HCPSS 2024 26 July 2024

Outline

- Reminders
- LHC experience
 - CMS ECAL : APD spikes and endcap radiation effects
 - CMS HCAL : Calibration and (insidious) photosensor aging
- HL-LHC : CMS HGCAL
 - Readout challenges
- Future Higgs Factory : Dual Readout Calorimetry

Reminder : EM vs. Hadronic shower

• EM showers are compact, regular, and homogeneous

$$X_0 \propto (n\sigma_{\rm radiative})^{-1} \propto \frac{A}{Z^2}$$

 Hadronic showers are extended, irregular, composed of EM and non-EM components, and lose energy to soft neutrals and nuclear break-up

$$\lambda_{\rm int} \propto (n\sigma_{\rm pN})^{-1} \propto A^{\frac{1}{3}}$$

Fig. 8.16. Monte Carlo simulations of the different development of hadronic and electromagnetic cascades in the Earth's atmosphere, induced by 250 GeV protons and photons [51].

Reminder : Challenges of hadronic calorimetry

- Large difference in EM and non-EM response (e/h \neq 1) brings challenges:
 - (e/h ≠ 1) + dependence of average f_{EM} on incident energy → calibration depends on incident energy
 - (e/h ≠ 1) + f_{EM} fluctuations → degraded resolution

Reminder : Cerenkov radiation

- Cherenkov radiation produced when charged particle travels through medium (with index of refraction n) at faster than local speed of light
 - Often used for PID in flavor physics: measure both velocity + momentum to obtain mass.
- For calorimetry, generally only secondary electrons are sufficiently relativistic to produce Cerenkov
 - For quartz (n=1.485), minimum KE(e) = 0.1 MeV and minimum KE(p) = 220 MeV.
 - Therefore : Cerenkov light dominated by EM component in hadronic showers.

Practical challenges : Radiation and Pileup

Radiation

Cumulative damage:

- Total ionizing dose (TID)
 - CMOS electronics
 - Scintillator
- Displacement damage from non-ionizing energy loss (NIEL) - silicon sensors

Transient effects:

 Single event effects (SEE) impact operation of CMOS electronics and other components

HL-LHC calorimeters:

- TID = 200 Mrad
- NIEL = 10¹⁶ 1MeV-eq neutrons / cm⁻²

Pileup

- Pileup : multiple p-p collisions occurring every LHC bunch crossing.
- Remove PU tracks by selecting one primary vertex (PV), but ...
- Can't remove
 neutrals
- At HL-LHC, vertices will overlap

Pileup

 Use precision timing (~30 ps resolution) to remove tracks and neutral deposits not in-time with PV

Practical experience : CMS ECAL and HCAL endcap

CMS ECAL

PbWO₄ crystals

CMS ECAL APD Spikes

wC

CMS ECAL Crystal Transparency

- PbWO4 crystals are darkened by high TID
- Laser calibration during orbit gap + dedicated π⁰→γγ data stream provide real-time measurement and correction
- Response loss is ~1% every 3-4 hours in ECAL barrel; response partially recovers with no beam

CMS HCAL

- 17 layer sampling calorimeter : brass (5-8 cm) + plastic scintillator (4mm) + SiPM readout
- Barrel: $|\eta| < 1.3$, 5.8 λ_{int} , 9216 channels
- Endcaps 1.3<I η I<3, 10 λ_{int} , 6912 channels

CMS HCAL wave length shifting

- Scintillation light is emitted isotropically in HCAL tile.
- How do we get it out to the photosensor?
- Optical fiber, but any light that can enter the fiber will also exit the fiber and be lost?
- Wavelength shifting fiber absorbs light internally and re-emits isotropically so that ~5% is captured through total internal reflection.
- Wavelength shifting results from Stokes shift

Interatomic distance

CMS HCAL light path

• Optical Decoder Unit re-maps light from layers into towers on periphery of detector.

 Photosensors (SiPMs) connect to ODU and convert light into analog electrical signal, which is then digitized by front-end ASIC

Calibration : CMS HCAL (e.g.)

- Need to redundantly understand full chain (scintillator
 → optical fibers → photosensors → electronics) and
 each component of chain.
- Calibration systems not guaranteed to be stable!
- Test beam → full chain
- Cs137 source routed to each scintillator tile → full chain
- Calibration systems
 - On-detector LED → photosensors
 - Laser-to-SiPM → photosensors
 - Laser-to-scintillator → full chain
 - Internal charge injection → electronics
- With data
 - Muons → channel-to-channel leveling
 - Isolated charged pions → hadronic response
 - Z+jet, γ+jet → jet response vs. energy, η, and p_T

Calibration : CMS HCAL (e.g.)

- Need to redundantly understand full chain (scintillator
 → optical fibers → photosensors → electronics) and
 each component of chain.
- Calibration systems not guaranteed to be stable!
- Test beam → full chain
- Cs137 source routed to each scintillator tile → full chain
- Calibration systems
 - On-detector LED → photosensors
 - Laser-to-SiPM → photosensors
 - Laser-to-scintillator → full chain
 - Internal charge injection → electronics
- With data
 - Muons → channel-to-channel leveling
 - Isolated charged pions → hadronic response
 - Z+jet, γ+jet → jet response vs. energy, η, and p_T

CMS HCAL Hybrid Photodiode Aging

- Observed response loss with dependence on η , layer, delivered lumi \rightarrow radiation damage
- (Eventually) realized phi dependence \rightarrow NOT consistent with radiation damage.
- What other sources of aging?

CMS HCAL Hybrid Photodiode Aging (2)

- Checked response of HPDs removed from detector with laser. •
- HPD photocathodes showed higher than expected degradation •
 - Scaled with level of HPD vacuum \rightarrow caused by known "ion feedback" mechanism
 - Damage is highly local under fibers from detector \rightarrow not caught by LED or laser system!
- HPDs replaced with SiPMs in 2017-2019. ٠

HL-LHC : CMS High Granularity Endcap Calorimeter Replacement

CMS High Granularity Calorimeter (HGCAL)

- Extreme radiation and pileup levels for HL-LHC required total replacement of CMS ECAL and HCAL endcaps.
- HGCAL is a novel "imaging" calorimeter that will reconstruct showers with extreme detail for
 - Separating pileup-related energy deposits from deposits of interest
 - Identifying forward jets from VBF Higgs production
 - 1.5 < lηl < 3
 - ECAL : 26 layers, Cu/CuW/Pb, 27.7 X₀
 - HCAL : 21 layers, steel, 10 λ_{int}
 - 620 m² Si \rightarrow 6M channels
 - 370 m² scintillator \rightarrow 280k channels!
 - 26k Si / 4k scint modules

CMS HGCAL : imaging calorimeter

CMS HGCAL : imaging calorimeter

iminary

Simulated hits for single ~50 GeV pion interacting with HGCAL

Reconstruction of clusters with 200 PU overlaid on single pion

CMS Phase

ICHEP 2020

Jingyu Zhang

to retain hits of interest CMS HCCAL : Pileup removal with precision timing Design HGCAL to obtain a ~30ps timing measurement for HGCAL provides ~30 ps precision for multi-MIP energy deposits multi-MIP energy deposits

- Plots show cells with E > 3.5 MIPs projected to front face with and without timing requirement.
 - Simulation is VBF (H \rightarrow YY) with one photon and one VBF jet in same quadrant

HGCAL : radiation-based design considerations

- Why both scintillator+SiPM and silicon sections? Why the funny shape of scintillator+SiPM section?
- Scintillator+SiPM is less expensive than silicon, but less radiation tolerant -> se scintillator+SiPM in low radiation regions.
- How to define "low radiation"?
 - We will "level" the response of all 6M HGCAL channels using the MIP as a "standard candle."
 - Require detector noise to remain at least ~3σ from MIP signal even after irradiation.
 - SiPM radiation-induced noise (dark current) will be unacceptable for good MIP reconstruction after 5 x 10¹³ neutrons / cm²

HEP data challenge

HEP aims to discover increasingly more massive particles, probe smaller distances, and study more rare processes.

This requires colliders/experiments with increasing energy and luminosity

- → increasing detector occupancy
 - → increasing detector granularity and precision
 - → increasing data volume produced by detector
 - → move more data processing to on-detector electronics
 - → increasing complexity, power consumption, and radiation tolerance

"The solution to every problem is another problem." Johann Wolfgang von Goethe

HGCAL data challenge

• Historically, trackers and calorimeters manage data rates with channel count, dynamic range, and readout rate

		channels	Dynamic range	Readout rate	Data rate				
	Tracker	2E+08	24	1 kHz	O(100 Gbps)				
(40	Calorimeter	1E+04	2 ¹⁰	40 MHz	O(1000 Gbps)				
~9k 10.24 Gbps links)									

• This is changing:

Dout_p[12:0]

Dout_n[12:0]

- Trackers will contribute to L1 trigger @ 40 MHz
- · Calorimeters will have ~10M channels
- Readout schemes become more complex → move more complexity onto the detector for processing data at source.

HGCAL Readout Architecture

James Hirschauer I Calo Lecture 1

HGCAL data challenge

7/24/24 James Hirschauer | Calo Lecture 1 ° A ° A ° A ° A

30

A-A-A-A-A-A-A-A-A-A-A-A

Calorimeter R&D for Future Colliders

Requirements for future e+e- Higgs factory

- Jet energy resolution :
 - Require 3-4% resolution for 100 GeV jets to separate hadronically decaying W and Z bosons
 - Essential for absolute measurement of Higgs total width in e+e- → ZH events.
- **EM resolution** remains critical:
 - Precision W/Z boson studies
 - Electron bremsstrahlung recovery

Can we improve jet resolution without harming EM resolution?

Traditional trade-off : jet vs. EM resolution

- Excellent EM resolution usually harms jet resolution
 - Strong EM response in ECAL leads to e/h mismatch.
- Even for well matched e/h, f_{EM}
 fluctuations have a major impact on hadronic resolution.

	ECAL e/h	HCAL e/h	EM res (1/√E)	Had res (1/√E)
CMS	2.4	1.3	3%	100%
ATLAS	1.4	~1.4	10%	50%

 (e/h >>1 in ECAL) → strong calibration dependence on location of shower initiation

Solution : Dual Readout (DR) Calorimetry

- Simultaneous and independent measurements of Scintillation light (S) and Cerenkov light (C) make it possible to measure f_{EM} of hadronic showers event-by-event!
- e/h for S and C are inherently different
 - Hadrons contribute to S but not C
 - Electrons contribute to both S and C
- **RD52 / DREAM** has demonstrated excellent performance for hadron calorimetry and proof-of-principle for EM crystal calorimeter.

CalVision collaboration goal : demonstrate strong performance of **combined** DR Crystal EM calorimeter + DR HCAL for excellent jet resolution without sacrificing EM resolution.

Dual Readout Method

- Slope of line ξ determined only by e/h values of S and C response
 - ξ is independent of energy and hadron type!
- Energy reconstructed universally as

 $\mathsf{E}=(\xi\mathsf{S}-\hat{\mathsf{C}})/(\xi-1)$

 where S and C are measured eventby-event and ξ is fixed for calorimeter.

RD52 / DREAM Hadron Calorimeter

- Copper absorber and bundles of scintillating fiber and quartz (no scintillation)
- Excellent hadronic resolution, decent EM resolution.

RD52 / DREAM "rotation method"

- Obtained $\sigma/E = 3\%$ for 80 GeV π + and protons.
- Which is $\sim 30\% / \sqrt{(E)}$

80 GeV π^+ / p

DR crystal calorimeter

- Separate S and C in single monolithic crystal with wavelength and timing/ pulse shape
- Good performance requires clean separation of S and C components that maintains large S contribution for EM resolution and preserves small C contribution for DR method
 - Wavelength : photosensors with near UV sensitivity, optimized filters
 - **Timing** : Fast timing and precise pulse shape discrimination perform on-detector to avoid "big data" challenges.

Wavelength challenges

- Ideally would take C from its peak at UV wavelengths
 - 1. Crystals have low transmittance in UV
 - 2. Photosensors have low efficiency in UV
- Instead use filter select long wavelength for C and infra-read optimized SiPM.
- Ongoing R&D:
 - New materials to address (1)
 - Improved photosensors to address (2)

CalVision timing / pulse shapes in beam test

- 120 GeV protons on BGO crystal
 - Select MIP protons produce both S and C

Fermilab

Conclusion

- This is an exciting time for calorimetry
- CMS is deploying a novel and ambitious new HGCAL will provide an eternal playground for AI/ML!
- Upcoming challenges for extreme precision and radiation tolerance at future e+e- and pp colliders require immediate R&D.
- We are always in need of interested new collaborators please feel free to contact me!

Additional material

CMS High Granularity Calorimeter

Key Parameters:

- HGCAL covers $1.5 < \eta < 3.0$
- Full system maintained at -30°C
- ~620 m² of silicon sensors
- ~370 m² of scintillators
- ~6M Si channels, 0.5 or 1.2 cm² cell size (6M)
 ~280k scint-tile channels (η-φ) 4-30 cm²
 - · Data readout from all layers
 - Trigger readout from alternate layers in CE-E and all in CE-H
- ~26000 Si modules, 3700 Scintillator modules

Active Elements:

- Si sensors (full and partial hexagons) in CE-E and high-radiation region of CE-H.
- SiPM-on-Scintillating tiles in low-radiation region of CE-H

Electromagnetic calorimeter (CE-E): Si, Cu/CuW/Pb absorbers, 26 layers, 27.7 X₀ Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 21 layers, 10.0 λ (including CE-E) ~220 tonnes per endcap

Scintillation : plastic scintillator (e.g.)

- **Base material** is excited by ionization at molecular level and emits UV light in de-excitation.
 - In general, base material is nearly opaque to initial UV light.
- Secondary fluors absorb primary UV light and re-emit in visible part of spectrum.
- Primary scintillation light (from base) results from excitation and de-excitation of benzene rings.

21

- S1→S0 decay is fast scintillation (nsec)
- S1→T1 decay is slow phosphoresence (msec)

Wave-length shifting

- Scintillation light is **emitted isotropically** in HCAL tile.
- How do we get it out?

- Optical fiber, but any light that can enter fiber can also exit, so
- Wavelength shifting fiber absorbs light and re-emits isotropically at longer wave so that ~5% is captured through total internal reflection.
- Wavelength shifting results from **Stokes shift**.

Photosensors

- p.e. accelerated over 2kV into dynode chain
- Secondary emission electrons provide gain 10⁶

Hybrid Photodiode

- photoelectron produced in photocathode
- accelerated over 10kV/3mm.
- gain = $V_{app}/3.6 \text{ eV} = 2000$

Silicon Photomultiplier

- array of binary GAPD,
- gain = $C_{GAPD} \times (V_{op} V_{bd})$ = 100 fF (1V) = 10⁶

Photosensors

Quantity	PMT	HPD	SiPM			
bias voltage	2kV	10kV	$50 \mathrm{V}$			
gain (M)	10^{6}	10^{3}	10^{5} - 10^{6}			
volume/channel	$10 \mathrm{cm}^3$	$10 \mathrm{cm}^3$	$< 1 \mathrm{cm}^3$			
B-field performance	None	Good	Good			
High amplitude noise	Fair	Poor	Good			
Response stability	Fair	Fair	Good			
sensitivity	1 pe	>1 pe	1 pe			
δT for $\delta M/M = 1\%$	$3^{\circ}\mathrm{C}$	$4^{\circ}\mathrm{C}$	$1^{\circ}\mathrm{C}$			
$\delta V_b / V_b$ for $\delta M/M = 1\%$	5×10^{-4}	5×10^{-3}	10^{-3}			

Biggest SiPM challenge is radiation-induced dark current

CMS HCAL Hybrid Photodiode Aging (2)

