Tracking detectors at the LHC

corrinne mills

July 2024

Overview

- Day 1: Depth, and the TRT
 - \rightarrow What are tracking detectors for?
 - \rightarrow A gas-ionization-based detector: the TRT at ATLAS
 - \rightarrow Physics of silicon detectors
 - \rightarrow Radiation damage
- Day 2: Breadth, and the future
 - \rightarrow The present: CMS, ATLAS, LHCb
 - \rightarrow The current future
 - Pixel and strip detector upgrades
 - LGAD timing detectors
 - \rightarrow The future future

ERSITY OF

AGO

🞰 🛟 Fermilab

MAPS and flexible detectors

Where I'm coming from

VERSITY OF NOIS

AGO

- PhD on CDF at UCSB: SVXII operations and CMS tracker module testing
- (ATLAS for both postdoc positions: almost no hardware)
- CMS: pixels for HL-LHC: testbeam of sensors pre- and post-irradiation
- These experiences and interests influence my choice and presentation of material

Tracking is helix-finding

- Tracking is fundamental to • charged particle reconstruction + measurement
 - \rightarrow [Transverse] momentum
 - kinematic selection
 - \rightarrow Impact parameter
 - Displaced tracks from decay of particles such as b-quark hadrons
- Helical trajectory defined by 5 ٠ track parameters
 - \rightarrow 2 impact parameters
 - \rightarrow 2 angles

RSITY OF

 \rightarrow curvature/momentum

Signals from charged particles

Bethe-Bloch equation describes interaction of particles with matter

UIC

 $\beta \gamma =$

Signals from charged particles

• Signal in a *thin* detector such as a plane of silicon is Landau-ish

Technology vs occupancy

these

lectures

- LHC: collisions every 25 ns and ~tens of collisions per bunch crossing (interaction region ~20 cm long, microns wide)
- Intense radiation environment and high particle density at the center
- **Table 35.1:** Typical resolutions and deadtimes of common charged par-ticle detectors. Revised September 2023.

	Intrinsinc Spatial	Time	Dead
Detector Type	Resolution (rms)	Resolution	Time
Resistive plate chamber	$50\mu{ m m}$	$50-1000 \ ps^*$	$10 \mathrm{ns^{\dagger}}$
Liquid argon TPC	$0.5 ext{}1~\mathrm{mm}^{\ddagger}$	$0.01\text{-}1~\mu\mathrm{s}^{\$}$	¶
Scintillation tracker	${\sim}100~\mu{ m m}$	$100 \mathrm{ps/n^{\parallel}}$	$10 \mathrm{ns}$
Bubble chamber	$10150~\mu\mathrm{m}$	$1 \mathrm{ms}$	$50 \mathrm{~ms^{**}}$
Wire chambers	50, 100, um	5 10 ns ^{††}	20 200 na ^{‡‡}
(proportional and drift chambers)) $50-100 \ \mu \text{m}$	5–10 IIS++	20–200 IIS··
Micro-pattern gas detector	$3040~\mu\mathrm{m}$	$5 ext{}10~\mathrm{ns^{\dagger\dagger}}$	20-200 ns ^{‡‡}
Silicon strips/pixels	$\lesssim 10 \ \mu { m m}^{\$\$}$	few ns ^{¶¶ ‡‡}	$\lesssim 50~{ m ns}^{\ddagger\ddagger}$

 Study of rare processes such as Higgs boson production require evermore-intense beams

RSITY OF

ATLAS Transition Radiation Tracker (TRT)

RSITY OF

- Drift chamber of straw tubes
- Just under 300k straws 4 mm ID and 144 cm (37 cm) long in the barrel (endcaps)
- Wire running down the center measures signal
 - 70% Xe or Ar gas absorbs TR (x-ray) photons, 27% CO₂ is a "quenching" gas (absorbs soft photons), $3\% O_2$ stabilizes highvoltage operations
- Xe-based gas mixture in Run 1, but gas system leaks in inaccessible places → switch to lessexpensive Ar-based

8

The TRT is a drift chamber

c. mills

- Xe-based gas mixture in Run 1, but gas system leaks in inaccessible places
- Switch to less-expensive Ar •

ERSITY OF

CAGO

- \rightarrow Similar performance for tracking
- \rightarrow Reduced capabilities for particle ID

- Drift tubes measure distance to wire via drift time
 - Covered in muon detector lectures last week
- Residuals show precision of the position measurement

TRT performance in Run 1: JINST 12 (2017) P05002

Particle ID capabilities of the TRT

- Depends on γ → electron/pion discrimination up to ~100 GeV
 - \rightarrow Saturates above that momentum
 - $\rightarrow \gamma = E/m \text{ so } \gamma_e / \gamma_\pi = m_\pi / m_e \sim 280$
- Apply two charge thresholds (low and high) to detected charge in the readout electronics
 TBT performance note ATLAS-CONE

ERSITY OF

TRT performance note ATLAS-CONF-2011-128

Radiation of x-ray band photons aligned with particle direction by relativistic particles crossing boundary between materials with different dielectric constants

High occupancy presents challenges

The TRT remains essential for p_T

But for the transverse momentum measurement the TRT still matters. In Run 1, used heavy-ion data to study performance vs. occupancy:

Reading out a shorter time window reduces the effective occupancy:

c. mills

Silicon tracking detectors

Photo: CMS-PHO-TRACKER-2008-002-12 TIB integration activities in Florence and Pisa, May 2005

Semiconductors

- Charged particle passing through semiconductor creates electron-hole pairs
- Charged-particle signal (10⁴ electron-hole pairs) swamped by thermal production (10⁸ e-h pairs at room temperature)

14

Semiconductors

 Semiconductors typically deliberately doped with impurities to alter their band structure – introduces relatively mobile charge carriers

 \rightarrow type V or III, typically boron or phosphorus

p-type

VERSITY OF Nois charge carrier positive stationary nucleus effectively negative *n-type* charge carrier negative stationary nucleus effectively positive

Semiconductors

 Doping alters the band structure and Fermi Level = energy at which 50% of states are occupied

VERSITY OF Nois

The p-n junction

- At thermal equilibrium with no external E field
- Fermi level must be the same throughout material
 - → Diffusion of surplus charge carriers across the boundary at the interface until thermal equilibrium is reached.
 - \rightarrow Result: depletion region with space charge \rightarrow internal electric field

The p-n junction

Reverse bias: depletion region expands

Forward bias: current flows

c. mills

This is how we operate the detectors

ERSITY OF

AGO

Basic Si detectors are "just" diodes

- Segmented implants with different doping than bulk
- Classically p-in-n detector, but n⁺-in-n and n-in-p also possible
- Reverse bias **depletes** the bulk

• "Pixel" and "strip" detectors distinguished by segmentation and readout: at edge for strips, overlaid for pixels

Electron-hole pairs drift

- Charges drift under the influence of the E and B fields
 - → Lorentz angle = angle of charge drift relative to the E field
 - \rightarrow Drift direction offset the same for positive and negative

$$\vec{F} = q\vec{E} + q\vec{v}\times\vec{B}$$

Electronics amplify and digitize

- Readout via dedicated ASIC (Application-Specific Integrated Circuit)
- Pulses are small *must be amplified*

 \rightarrow 80 e+h pairs per micron * 150 um detector = 12,000 electrons = 2 fC

- Zero-suppression: only read out pixels/strips with charge over predefined threshold – *don't spend bandwidth on noise*
- Measure time-over-threshold or just presence of charge (binary)

21

Resolution and cluster size

- Single pixel clusters are effectively *binary*: all the information we have is that the track hit in the pixel
 - \rightarrow Results in resolution of pitch/sqrt(12)
- With two or more pixels, charge distribution between adjacent pixels carries information about track location

- Position resolution is determined by combination of pitch and charge measurement granularity ($\Delta q/q$)
- Two-pixel clusters have best position resolution

RSITY OF

AGO

- \rightarrow Larger clusters: charge of edge pixels most important
- On CMS, a template fit is used to infer position from cluster shape

Key metric: Position Resolution

- **Resolution** quantifies how well we can measure the position of a particle passing through the detector
- In one event, measure a residual = difference between extrapolated track position and position measured by the detector
- Reference track from beam telescope at testbeam, or track reconstructed in situ without layer being characterized
- Make a distribution of residuals for all events
 - → Approximately Gaussian (usually...)
 - \rightarrow Mean should be zero
 - \rightarrow Width is the resolution

ERSITY OF

05

Nested cylindrical layers form tracking systems

- Pixels at smallest radii, strips at large radii
- Strip direction aligned with beam (or radially outward on disks)
 - \rightarrow Best measurement R- φ

ERSITY OF

• Pixels: greater longitudinal segmentation

Building tracks

- From detector pulses to a particle trajectory
- Seed tracks built with 3-4 hits in pixel detector
- Kalman filter for track extrapolation and subsequent fit to helical trajectory

Up-close view of a test device

c. mills

VERSITY OF NOIS

Low voltage and ASIC tuning

- LV = low voltage, powers the ASIC (readout chip)
- ASIC has numerous *registers* that control threshold (global and per-pixel or per-strip), gain (DAC output → electrons map), etc
- Use internal charge injection circuits to calibrate the response
- Example: threshold tuning for a CMS Phase 2 pixel prototype

High voltage and I-V curves

- HV = high voltage, depletes the sensor
 - → Planar devices: up to 120V unirradiated, up to 800V irradiated
 - → 3d devices: up to 30-40V unirradiated, up to ~120V irradiated
- Current is called a "leakage current'
 - \rightarrow range nA (unirradiated planar sensor) to 10s of μ A (irradiated sensors)
- Leakage currents are strongly temperature dependent

RSITY OF

→ A good way to test the HV connection is to see if the leakage current changes with the temperature.

unirradiated CMS prototype planar pixel sensor (temp unknown) from <u>NIM A1053 (2023) 168326</u>

"NIEL hypothesis" of lattice damage

- Silicon detectors still susceptible to radiation damage
- Primary effect in sensors from damage to the silicon crystal lattice
- Studied by hadron (usually p) bombardment of devices as a function of flux Φ
- Scale to units of 95
 MeV neutron
 equivalent per cm²
 - \rightarrow Abbreviated to n_{eq}/cm^2

ERSITY OF

CAGO

Fig. 3. NIEL cross sections normalized to 95 MeV mb. Data collected by A. Vasilescu and G. Lindstroem [22] based on [23]–[26] and private communications.

This and graphs on the following slides from Moll review on radiation damage, IEEE TNS (2018)

c. mills

Leakage current increases

- Damage to crystal lattice complicates the band structure with intermediate states
 - → Trapping centers reduce charge collection efficiency
 - → Generation centers increase leakage current (proportional to fluence)

Depletion requires more voltage

- Lattice structure damage also changes effective doping concentration
 - \rightarrow Example: Vacancy + phosphorous removes the donor property of P
 - \rightarrow Many competing effects
 - \rightarrow Space charge sign inversion, sometimes referred to as "type inversion"
- Primary effect is on depletion voltage → much more required to operate sensor at full efficiency

Annealing helps (and then hurts)

- Annealing effects complicate the issue
- Competing effects with different time constants
 - \rightarrow "Beneficial" annealing: recombination of vacancy and interstitial ($\tau \sim$ hours)
 - \rightarrow "Reverse" annealing: more complex defects can combine ($\tau \sim$ days)
 - V+V \rightarrow double vacancy (charge trapping), vacancy + impurity
- Thermal process: vacancies and interstitials are mobile
 - \rightarrow Reason to keep silicon detectors **cold** (-20C -> -35C)

Rad-hard design: planar and 3D

- Reduce the drift length through the sensor geometry to mitigate radiation damage
 - \rightarrow Thinner planar sensors (CMS Phase 2 is 150 μ m)
 - \rightarrow Change the drift path from **transverse** to **parallel** to sensor surface
 - Maintain signal amplitude, which is proportional to sensor depth

3D sensor

- → shorter drift length L
- lower depletion voltage
- → technically more challenging
- inner layer (at most one)

Key metric: Efficiency

Efficiency = $\frac{N(\text{tracks with matched clusters})}{N(\text{tracks})}$

- Answers the question: if there should be a hit there, is there one?
- Should be > 99% for unirradiated devices
- Increases with bias voltage
 - \rightarrow unirradiated planar devices can be nearly fully efficient at 0V

Radiation and electronics

- Electronics are also sensitive to radiation, but differently so
 - \rightarrow EM damage = the "dose", vs. fluence for the sensors
 - \rightarrow Typically tested through exposure to x-ray and gamma photons
- Single-event upset (SEU) flipped bit
 - → Guard against through "triple modular redundancy" for important registers: majority vote of three replicas
- Damage to transistors: shrink transistor size (130 nm \rightarrow 65 nm)

ATLAS pixel chip in X-ray irradiations

arXiv:2404.10963 [physics.ins-det]

Tomorrow: LHC tracking now and in the near future

/ERSITY OF VOIS