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« Day 1: Depth, and the TRT
— What are tracking detectors for?
— A gas-ionization-based detector: the TRT at ATLAS
— Physics of silicon detectors
— Radiation damage
- Day 2: Breadth, and the future
— The present: CMS, ATLAS, LHCb

— The current future

= Pixel and strip detector upgrades
= LGAD timing detectors

— The future future
= MAPS and flexible detectors
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PhD on CDF at UCSB: SVXII operations
and CMS tracker module testing

(ATLAS for both postdoc positions:
almost no hardware)

CMS: pixels for HL-LHC: testbeam of
sensors pre- and post-irradiation

These experiences and interests
influence my choice and presentation of
material
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Tracking is helix-finding

- Tracking is fundamental to
charged particle reconstruction
+ measurement

— [Transverse] momentum
= kinematic selection
— Impact parameter

» Displaced tracks from decay of
particles such as b-quark hadrons

- Helical trajectory defined by 5
track parameters

R-¢ view
momentum ~
1/curvature
azimuthal
angle ¢

N\

................................. transverse impact
v parameter d, (at
point of closest

beamspot
(beam into page)

— 2 impact parameters R-z view approach)
— 2 angles
— curvature/momentum
polar angle 6
o beam
% longitudinal impact
o2 § parameter z,
w22 Y
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Signals from charged particles

Bethe-Bloch equation describes interaction of particles with matter
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Signals from charged particles
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- Signal in a thin detector such as a plane of silicon is Landau-ish

Energy loss [MeV cm?2/g] — Improved distribution
1z 14 16 18 20 22 24 1 1.0 described by Bichsel
10 GeV muon M (A)/M (OO)/
150 - 1.7 mm Si 0 0 o
| 1 mean value != most
- | 108 robable value
'% 100 M {(A)/M {() ] 0'6% P
23 B 1043 | Silicon: 366V
~ - i andau-vavilov 1Vt s
é 50 _ ‘\.éBichsel (Bethe-Fano theory) | bandgap ~ 1 electron-
. / 1o hole pair
| (A 1
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Electronic energy loss A [MeV]
\ J\ J
| |
poisson bulk long tail (delta rays)
¢ (stochastic process)
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Technology vs occupancy

Study of rare processes
such as Higgs boson
production require ever-
more-intense beams

- LHC: collisions every 25 ns
and ~tens of collisions per
bunch crossing (interaction
region ~20 cm long, microns
wide)

- Intense radiation
environment and high particle
density at the center

Table 35.1: Typical resolutions and deadtimes of common charged par-
ticle detectors. Revised September 2023.

Intrinsinc Spatial  Time Dead
Detector Type Resolution (rms) Resolution  Time
Resistive plate chamber 50 pm 50-1000 ps* 10 ns'
Liquid argon TPC 0.5-1 mm?! 0.01-1 psd —1
Scintillation tracker ~100 ym 100 ps/nl 10 ns
Bubble chamber 10-150 pm 1 ms 50 ms**

Wire chambers 50-100 pm 5-10 ns't 20-200 nsit

these (proportional and drift chambers)
Micro-pattern gas detector 30-40 pum 5-10 ns'™ 20-200 ns*
o lectures Silicon strips/pixels <10 pm®  few nsTT # < 50 nstt
5 @ c. mills July 29-30, 2024 7




ATLAS Transition Radiation Tracker (TRT)
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R=122.5 mm
Pixels { R = 88.5 mm
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TRT

SCT 4

rR= 1082 mm

LR=554mm
(R =514 mm

R =443 mm

R =371 mm

L R =299 mm

R =50.5 mm

R=0mm

TRT performance in Run 1: JINST 12 (2017) P05002

TRT

Drift chamber of straw
tubes

Just under 300k straws
4 mm ID and 144 cm (37
cm) long in the barrel
(endcaps)

Wire running down the
center measures signal

70% Xe or Ar gas
absorbs TR (x-ray)
photons, 27% CO, is a
“‘quenching” gas
(absorbs soft photons),
3% O, stabilizes high-
voltage operations

Xe-based gas mixture in
Run 1, but gas system
leaks in inaccessible
places - switch to less-
expensive Ar-based

c. mills
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https://iopscience.iop.org/article/10.1088/1748-0221/12/05/P05002

The TRT is a drift chamber

THE

UNIVERSITY OF
ILLINOIS

AT

CHICAGO

Track-to-wire distance ( r ) [mm]
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Drift tubes measure
distance to wire via drift
time

Covered in muon detector
lectures last week

%

Residuals show precision
of the position
measurement

Drift time ( t ) [ns] e

= "t ATLAS Preliminary TRT EndCap -

[ [ Lu : . :

* Xe-based gas mlxture. in Run 1 ’ g o[ 2016 Data, \s=13 TeV Argon based mixture ]
but gas system leaks in 2  F ]
inaccessible places 155 o133 um w135

- Switch to less-expensive Ar i -
— Similar performance for tracking - . . .

0.5 . . ]

— Reduced capabilities for particle - e e, g
-0.8 -06 -04 -0.2 0 02 04 06 038

Position Residual [mm]

TRT performance in Run 1: JINST 12 (2017) P05002
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https://iopscience.iop.org/article/10.1088/1748-0221/12/05/P05002

Particle ID capabilities of the TRT
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-128/

ngh occupancy presents challenges
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/TRT-2016-001/
https://iopscience.iop.org/article/10.1088/1748-0221/12/05/P05002

The TRT remains essential for p;

Transverse momentum resolution [%]
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But for the transverse momentum
measurement the TRT still matters.

In Run 1, used heavy-ion data to study
performance vs. occupancy:

Reading out a shorter time
window reduces the effective
occupancy:
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/TRT-2016-001/
https://iopscience.iop.org/article/10.1088/1748-0221/12/05/P05002

Silicon tracking detectors

 Photo: CMS-PHO-TRACKER-2008-002-12




T>0K
Valence electron
Conduction electron

Semiconductors

Charged particle passing through semiconductor creates

electron-hole pairs
Charged-particle signal (10* electron-hole pairs) swamped by

thermal production (108 e-h pairs at room temperature)
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Semiconductors
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Semiconductors typically deliberately doped with impurities to alter

their band structure —

introduces relatively mobile charge carriers

— type V or lll, typically boron or phosphorus

::::::::::
:::::T T:.::: o
O
| | | | | |
::::::—'

p-type
charge carrier positive
Stationary nucleus effectively negative

e o
T —conduction
::::::::_, electron
| | | |

n-type
charge carrier negative
stationary nucleus effectively positive

c. mills
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Semiconductors

Doping alters the band structure and Fermi Level = energy at which
50% of states are occupied

Conduction; //
AL, 7
Z
4
_Eg ‘ @ Acceptor
_JFermi =rl J| 5 level
level iz
2 G SRR Fermi
' Normally /] Level
A Y silled band /]
P =
o
07777737 TTT7AN | VT
Other filled D(E)
bands
undoped n-type p-type
s
=
22 8 from Melissinos & Napolitano
w3Z S
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&



THE

UNIVERSITY OF
ILLINOIS

AT

CHICAGO

The p-n junction

At thermal equilibrium with no external E field

Fermi level must be the same throughout material

— Diffusion of surplus charge carriers across the boundary at the interface until thermal
equilibrium is reached.

— Result: depletion region with space charge - internal electric field

depletion region

from F. Hartmann lectures on
semiconductor particle

detectors

-—
~J
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The p-n junction

THE

Reverse bias: depletion region expands Forward bias: current flows

Eexternal Eexternal

“«— @ e —> <€ ® ©) >
This is how we operate the detectors
T8
(]
-
22 §
52 §
Ejl—i .
3236 @y c. mills July 29-30, 2024 18
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Basic Si detectors are “just” diodes

-  Segmented implants with different doping than bulk
- Classically p-in-n detector, but n*-in-n and n-in-p also possible
- Reverse bias depletes the bulk

. t MF}mr————3 _—— — ground
p+/
nt__ n
+V

- “Pixel” and “strip” detectors distinguished by segmentation and
readout: at edge for strips, overlaid for pixels

Silicon strip sensors |
512 strips (2x10cm length)
{

B\

c. mills July 29-30, 2024



Electron-hole pairs drift

- Charges drift under the influence of the E and B fields
— Lorentz angle = angle of charge drift relative to the E field
— Drift direction offset the same for positive and negative

characteristic angle:
“Lorentz Angle”
particle most signal on these 2

particle trajectory most signal on these , DR
‘ /7/ 2 strips/pixels trajectory strips/pixels
A \
\

P . wam
E E B‘ % \
n
: B out of the page B parallel to E
typical of barrel typical of forward/disks
EELE @ c. mills July 29-30, 2024 20



Electronics amplify and digitize

- Readout via dedicated ASIC (Application-Specific Integrated Circuit)

- Pulses are small — must be amplified
— 80 e+h pairs per micron * 150 um detector = 12,000 electrons = 2 fC

- Zero-suppression: only read out pixels/strips with charge over pre-
defined threshold — don’t spend bandwidth on noise

- Measure time-over-threshold or just presence of charge (binary)

Amplification — integrator with return-to-baseline
(details vary; not shown)

Buffering (store hits while waiting

1
/\ \ for trigger decision)
signal in / ‘ 7
Vin

Threshold Analog-to-digital conversion
(ADC) on or off detector
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Resolution and cluster size

- Single pixel clusters are effectively binary: all the information we have is
that the track hit in the pixel

— Results in resolution of pitch/sqrt(12)

- With two or more pixels, charge distribution between adjacent pixels
carries information about track location

4
1
I
1

1 1
4 |
1 1
J 1

- Position resolution is determined by combination of pitch and charge
measurement granularity (Ag/q)

- Two-pixel clusters have best position resolution
— Larger clusters: charge of edge pixels most important

On CMS, a template fit is used to infer position from cluster shape
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Key metric: Position Resolution
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- Resolution quantifies how well we can measure the position of a particle
passing through the detector

- In one event, measure a residual = difference between extrapolated
track position and position measured by the detector

- Reference track from beam «10° CMS (13 TeV)

telescope at tgstbgam,_ or track g 100 " Barel Pixel Layer 3
reconstructed in situ without - VOMPIAIBTEcONStUCUON ey praauals
. . - - Track p_> 12 GeV .
layer being characterized SE i ~Student-t it
o _ _ ™ 80— W =-0.08+0.02 um
- Make a distribution of residuals > | . ©,=9.48+0.02 um
for a” events _:'E" B :‘ mean=-0.15+0.02 um
_ _ — 60 11 RMS=18.00+0.02 um
— Approximately Gaussian O - ||
(usually...) o |
QO 4o
— Mean should be zero = i
-] | [ |
— Width is the resolution Z .
20/
PP 1-1-"'".1.""'1'#5—1
o 950 =100 =50 0 50 100 150
: Residuals r-¢ direction (um)
= .
Ui c. mills July 29-30, 2024 23



Nested cylindrical layers form tracking systems
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Pixels at smallest radii, strips at large radii

Strip direction aligned with beam (or radially outward on disks)
— Best measurement R-¢

Pixels: greater longitudinal segmentation

_ End cap -TEC-

2,4 1m

P
>

\ ///
CMS detector s
original geometry
@ c. mills July 29-30, 2024 24



Building tracks
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From detector pulses to a particle trajectory
Seed tracks built with 3-4 hits in pixel detector

Kalman filter for track extrapolation and subsequent fit to helical
trajectory

Vi

000

(@) (b)

Fig. 29-1. Motion of a particle in a uniform magnetic field.
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Up-close view of a test device
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Close-up of a
CMS Phase 2
pixel sensor
prototype
bump-bonded
to an RD53A
sensor

note the
_ delicate
wirebonds

and test points
for checking
voltages

c. mills
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Low voltage and ASIC tuning

LV = low voltage, powers the ASI/C (readout chip)

ASIC has numerous registers that control threshold (global and
per-pixel or per-strip), gain (DAC output = electrons map), etc

Use internal charge injection circuits to calibrate the response
Example: threshold tuning for a CMS Phase 2 pixel prototype

§ 1__ T—n 10°
5o S =
0.8— 4
: g - - 10
o - .
50% ol 2 all pixels respond -
efficiency = X with ~100%
threshold oL oy efficiency _ One entry per pixel
AT e o= " per injected charge
I =— :
_ point
02— = E 10
g 0_ — 1111 I 111 | 111 I 111 l 111 | 111 I 1111 1
> 0 100 20 300 400 500 600 700 800 900 1000
= > AVCal
Wn O
Eg g scan injected charge (AVCal maps to electrons)
ul—: —
3253

o

c. mills July 29-30, 2024
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High voltage and I-V curves
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HV = high voltage, depletes the
sensor

— Planar devices: up to 120V
unirradiated, up to 800V irradiated

— 3d devices: up to 30-40V

unirradiated, up to ~120V
irradiated

Current is called a “leakage
current’

— range nA (unirradiated planar

sensor) to 10s of uA (irradiated
sensors)

Leakage currents are strongly
temperature dependent

— A good way to test the HV
connection is to see if the leakage
current changes with the
temperature.

[
3
o))

-| — RD53A100x25-P1
| --- RD53A100x25-P2

Current [A]

[y
9
<

10-8H

0 200 400 600 800 1000
Bias voltage [V]

10~°

unirradiated CMS prototype planar pixel sensor
(temp unknown) from NIM A1053 (2023) 168326

c. mills
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https://doi.org/10.1016/j.nima.2023.168326

“NIEL hypothesis” of lattice damage

- Silicon detectors still
susceptible to
radiation damage

LHC-relevant range
10% ¢ -

. . 103
- Primary effect in : [ neutrons \__ protons
sensors from _ g 2
) -
damage to the g 100 1
.y . > 0.8
silicon crystal lattice 2 100f 05|V pions
- Studied by hadron  w b L O
(usuallyp) = 3 10 100 102 10
~ -2
bombardment of m 10 neutrons
- electrons

devices as a
function of flux ®

—_—
oS O
A &

hd Scale to units Of 95 10'5 i PERTTTTY EENERTTTT BT ER AT B TR ATITY EETATRETTT TSR ETTT TR TTTY SENAEETTT SRR AT EESTRTTIT BN ARTTTT RETER AT BETArRETI | |||||||-|
101910 10® 107 10 10 104 103 102 10" 10° 10' 10> 10° 10*

M eV_ neutron particle energy [MeV]
equivalent per cm?
s Abbreviated to Fig. 3. NIEL cross sections normalized to 95 MeV mb. Data collected
o 2 by A. Vasilescu and G. Lindstroem [22] based on [23]-[26] and private
> Neg/CM "
- communications.
22 9
m;g S This and graphs on the following slides from Moll review on radiation damage, IEEE TNS (2018)
TZ-2T .
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Leakage current increases
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- Damage to crystal lattice complicates the band structure with
intermediate states

— Trapping centers reduce charge collection efficiency
— Generation centers increase leakage current (proportional to fluence)

[ —
[ o n-type FZ- 71025 KQem
o © ntypeFZ-7KCrm
— 10 - n-type FZ-4KCrm
"g | o ntype FZ-3 KQem O
[ EPI - 2 and 4 K
- [ S T
— § : jlI
4| v ntype FZ-780 em |
> 107 o ntype FZ-410 xm L
= ~ ntype FZ-130Ckem
3 101 4 ntypeFZ-110Cem |
f 80 min 60°C  ® ™ypeCZ-140Cxm
6: ¢ p-type EPI - 380 (Xm |
10M 10'? 101 , 10 10 o
g D, [cni?] 10
Q
=X .
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Depletion requires more voltage

- Lattice structure damage also changes effective doping concentration
— Example: Vacancy + phosphorous removes the donor property of P
— Many competing effects
— Space charge sign inversion, sometimes referred to as “type inversion”

- Primary effect is on depletion voltage - much more required to operate
sensor at full efficiency

—~ S000F
AR g o
::::: S 500
e o i"'o‘x.“o || 100
LT, R
“"-‘—-1’ >, 10|
A s
o——O— >'O 1— i il el i :10-1
L ook 0 100 100 1P 10°
'Ew . @, [ 10" cmr* ]
w3 <
zZ3ez
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Annealing helps (and then hurts)

Annealing effects complicate the issue

Competing effects with different time constants
— “Beneficial” annealing: recombination of vacancy and interstitial (¢ ~ hours)

— “Reverse” annealing: more complex defects can combine (t ~ days)
= V+V - double vacancy (charge trapping), vacancy + impurity

Thermal process: vacancies and interstitials are mobile
— Reason to keep silicon detectors cold (-20C -> -35C)

5
E
& SNe Y
Z g P
5 EI .
%m . 1 10 100 1000 10000
5g 2 annealing time at 60°C [min]

c. mills July 29-30, 2024

&



Sensor doping and radiation

n-type silicon after high fluences: p-type silicon after high fluences:
(type inverted) (still p-type)
+on- nton- .
pTon-n S P n'strips

|| I N S

Undepleted region

Hole drift
Hole drift

Active region

Active region

Electron drift
HL-LHC pixels
Undepleted region

Electron drift

n'layer
Traversing particle Traversing particle

p-on-n silicon, under-depleted: n-on-p silicon, under-depleted:

e Charge spread — degraded resolution eLimited loss in CCE

e Charge loss — reduced CCE eLess degradation with under-depletion

eCollect electrons (3 x faster than holes)

Comments:
- Instead of n-on-p also n-on-n devices could be used Michael Moll

TZIL3 & *as they are in current CMS pixels s July 29-30, 2024



Rad-hard design: planar and 3D

- Reduce the drift length through the sensor geometry to mitigate
radiation damage

— Thinner planar sensors (CMS Phase 2 is 150 um)

— Change the drift path from transverse to parallel to sensor surface
= Maintain signal amplitude, which is proportional to sensor depth

thin-planar sensor 3D sensor

; : A
> drift length L<200um “_‘-_'g;-_ > shorter drift length L B
(now: 300um) < b'é 3" > lower depletion voltage o
> n-in-p (e signal) L bie > technically more o q
> outer and possibly  d r‘f challenging L | |
also innermost Pg,i: > inner layer (at most z
layers/rings y 2 ¢ one)
[ | - .
T8
(]
£
Wy ©
zS o
w22 O
IZ--X .
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Key metric: Efficiency

N (tracks with matched clusters)

Efficiency =

N (tracks)
- Answers the question: if there should be a hit there, is there one?
- Should be > 99% for unirradiated devices
- Increases with bias voltage
— unirradiated planar devices can be nearly fully efficient at 0V
g < g *- Yo T . Ce.
2 > 95 — 5 ' :
$0.98 g 90— ¢
T 0.96 & ::— + el ) '
0.94 [ o e 75— s
; | L 70 5 _
092 | p|anal’plxe|3 ....... o5l — + t 3d pIX8|S
09 | y | 60— S
: : i i 55 § G
0.88 |- | 0, =05x 10" cm? 50
0.86 [ | 4 0,,=36x 10'° em2 :2: . —e— RD53A_CNM_1:®=1.2x10"®n,/cm? Thr=1200e-
N | tm 72107 o ::_+ I = RD53A_CNM_1: ®=1.2x10"°n,/cm?, Thr=1600e-, ¢=10°
. 082 | 2 g =144 x 10" om? e
o 0.8-J...i..‘.;..J.i...A‘l..”l..“ij...l..‘.l.t 20 1 | 1 | I | 1 | 1 | 1 |
- 0 100 200 300 400 500 600 700 800 oo B . o vo":"g[v]
) w O Bias voltage [V] . . . g
Eg g publication forthcoming
()
w E ] E
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Radiation and electronics

- Electronics are also sensitive to radiation, but differently so
— EM damage = the “dose”, vs. fluence for the sensors
— Typically tested through exposure to x-ray and gamma photons
- Single-event upset (SEU) — flipped bit

— Guard against through “triple modular redundancy” for important registers:
majority vote of three replicas

- Damage to transistors: shrink transistor size (130 nm - 65 nm)
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Tomorrow: LHC tracking

now and in the near future
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