BSM Theory CERN/Fermilab HCPSS

Adam Martin amarti41@nd.edu

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Status: May 2019

ATLAS	Preliminary
/ // =/ \0	, i chinnear y

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1} \qquad \sqrt{s} = 8, \ 13 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss}	∫£ dt[fb	⁻¹] Limit	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$0 e, \mu$ 2γ $\geq 1 e, \mu$ -2γ multi-channe $0 e, \mu$ $1 e, \mu$ $1 e, \mu$	$1 - 4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ el $2J$ $\geq 1 b, \geq 1JJ$ $\geq 2 b, \geq 3$	Yes - - - - - 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\ Z' \to \ell\ell \\ \mathrm{SSM}\ Z' \to \tau\tau \\ \mathrm{Leptophobic}\ Z' \to bb \\ \mathrm{Leptophobic}\ Z' \to tt \\ \mathrm{SSM}\ W' \to \ell\nu \\ \mathrm{SSM}\ W' \to \tau\nu \\ \mathrm{HVT}\ V' \to WZ \to qqqq \ \mathrm{model}\ \mathrm{B} \\ \mathrm{HVT}\ V' \to WH/ZH \ \mathrm{model}\ \mathrm{B} \\ \mathrm{HVT}\ V' \to WH/ZH \ \mathrm{model}\ \mathrm{B} \\ \mathrm{LRSM}\ W_R \to tb \\ \mathrm{LRSM}\ W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	- 2 b ≥ 1 b, ≥ 1J/ - 2 J el el 1 J	– – Yes Yes –	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV Z' mass 3.0 TeV W' mass 6.0 TeV W' mass 3.7 TeV V' mass 3.6 TeV V' mass 2.93 TeV V' mass 3.25 TeV W _R mass 5.0 TeV W _R mass 5.0 TeV	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e,μ ≥1 e,μ	2 j 	_ Yes	37.0 36.1 36.1	Λ 21.8 TeV η _{LL} Λ 40.0 TeV η _{LL} Λ 2.57 TeV C4t = 4π	1703.09127 1707.02424 1811.02305
MQ	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	0 e, μ Λ) 0 e, μ 0 e, μ 0-1 e, μ	1 - 4 j 1 - 4 j $1 J, \le 1 j$ 1 b, 0-1 J	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1711.03301 1711.03301 1608.02372 1812.09743
ГΩ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV $\beta = 1$ LQ mass 1.56 TeV $\beta = 1$ LQ ^u mass 1.03 TeV $\beta(LQ_3^u \to b\tau) = 1$ LQ ^d mass 970 GeV $\beta(LQ_3^u \to t\tau) = 0$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$\begin{array}{c} VLQ\ TT \rightarrow Ht/Zt/Wb + X & r\\ VLQ\ BB \rightarrow Wt/Zb + X & r\\ VLQ\ T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + X & r\\ VLQ\ Y \rightarrow Wb + X & VLQ\ B \rightarrow Hb + X & VLQ\ QQ \rightarrow WqWq \end{array}$	multi-channe multi-channe $2(SS)/\geq 3 e,\mu$ $1 e,\mu$ $0 e,\mu, 2 \gamma$ $1 e,\mu$	el el $\mu \ge 1 \text{ b}, \ge 1 \text{ j}$ $\ge 1 \text{ b}, \ge 1$ $\ge 1 \text{ b}, \ge 1$ $\ge 4 \text{ j}$	Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV SU(2) doublet B mass 1.34 TeV SU(2) doublet $T_{5/3}$ mass 1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ Y mass 1.85 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ B mass 1.21 TeV $\kappa_B = 0.5$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV only u^* and d^* , $\Lambda = m(q^*)$ q* mass 5.3 TeV only u^* and d^* , $\Lambda = m(q^*)$ b* mass 2.6 TeV $\Lambda = 3.0 \text{ TeV}$ ℓ^* mass 3.0 TeV $\Lambda = 3.0 \text{ TeV}$ ν^* mass 1.6 TeV $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 2 Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$ \sqrt{s} :	1 e, μ 2 μ 2,3,4 e, μ (SS 3 e, μ, τ - - = 13 TeV tial data	≥ 2 j 2 j S) - - - - √s = 13 full d	Yes - - - - - 3 TeV ata	79.8 36.1 36.1 20.3 36.1 34.4	N° mass560 GeVNR mass3.2 TeVH±± mass870 GeVH±± mass870 GeVH±± mass400 GeVmulti-charged particle mass1.22 TeVmonopole mass2.37 TeV10^{-1}110Mages ecolor [TeV]	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130

	$\tilde{a}\tilde{a}, \tilde{a} \rightarrow a\tilde{\chi}^{0}$	0	2-6 jets	Yes	36.1	â 157 ToV	m(²⁰)-200 CoV m(15	1710 00000
	44, 4 - 44 1 ** * *0	mana ist	1 0 1010	100	00.1	1.57 TeV	m(x1)<200 Gev, m(1" gen. q)=m(2" gen. q)	1712.02332
S	$qq, q \rightarrow q\chi_1$ (compressed)	mono-jet	1-3 jets	Yes	36.1	710 GeV	$m(\tilde{q})-m(\tilde{\chi}_1^0)<5 \text{ GeV}$	1711.03301
e	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	36.1	8 2.02 TeV	$m(\tilde{\chi}_{1}^{0}) < 200 GeV$	1712.02332
¹ 2	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow aa \tilde{\chi}_{1}^{\pm} \rightarrow aa W^{\pm} \tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	36.1	2 201 TeV	$m(\tilde{V}^0) = 2000 \text{ CoV} m(\tilde{V}^{\pm}) = 0.5(m(\tilde{V}^0) + m(\tilde{v}^0))$	1710 00000
a	38,8 · · · · · · · · · · · · · · · · · ·	ee 1111	2 inte	Vac	147	2.01164	$m(x_1) < 200 \text{ GeV}, m(x_1) = 0.5(m(x_1) + m(g))$	1712.02332
Š	$gg, g \rightarrow qq(\ell\ell) \chi_1$	ee,µµ	2 jets	res	14.7	8 1.7 IeV	m(X ₁)<300 GeV,	1611.05791
Φ	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\nu\nu)\chi_1$	3 e, µ	4 jets	-	36.1	<i>š</i> 1.87 TeV	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$	1706.03731
Ś.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$	0	7-11 jets	Yes	36.1	ž 1.8 TeV	$m(\tilde{\chi}_1^0) \leq 400 \text{ GeV}$	1708.02794
SU	GMSB (Î NLSP)	$1-2\tau + 0-1\ell$	0-2 jets	Yes	3.2	2 0 ToV		1607 05070
ğ	GGM (bino NLSP)	2~		Vac	26.1	2.0107		1007.05979
5	COM (bioscies bios NI CD)	27	O inte	tes	30.1	8 2.15 Te	CT(NLSP)<0.1 mm	ATLAS-CONF-2017-080
	GGM (niggsino-bino NLSP)	γ	2 jets	Yes	36.1	8 2.05 TeV	$m(\tilde{\chi}_{1}^{0})=1700 \text{ GeV}, cr(NLSP)<0.1 \text{ mm}, \mu>0$	ATLAS-CONF-2017-080
	Gravitino LSP	0	mono-jet	Yes	20.3	F ^{1/2} scale 865 GeV	$m(\tilde{G}) > 1.8 \times 10^{-4} \text{ eV}, m(\tilde{g}) = m(\tilde{g}) = 1.5 \text{ TeV}$	1502.01518
ST								
g g	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow bb\chi_1$	0	3 b	Yes	36.1	<i>š</i> 1.92 TeV	m(X1)<600 GeV	1711.01901
2 5	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$	0-1 e, µ	3 b	Yes	36.1	2 197 TeV	$m(\tilde{x}_{1}^{0}) < 200 \text{ GeV}$	1711.01901
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0010						11((1)~200 084	1711.01901
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$	0	2 b	Yes	36.1	<i>b</i> ₁ 950 GeV	m(𝔅 ⁰ ) <420 GeV	1708.09266
on Ks	$\tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \rightarrow t \tilde{\chi}_1^{\pm}$	2 e. µ (SS)	1 b	Yes	36.1	δ. 275-700 GeV	$m(\tilde{v}^0) = 2000 \text{ GeV} m(\tilde{v}^{\pm}) = m(\tilde{v}^0) = 1000 \text{ GeV}$	1700.00200
C: ar	7.7.7.1. ^{5±}	0.2	1.0.1	Vee	4 7/40 0		$m(x_1) < 200 \text{ GeV}, m(x_1) = m(x_1) + 100 \text{ GeV}$	1706.03731
23	$I_1I_1, I_1 \rightarrow b X_1$	0-2 e,µ	1-2 D	res 4	4.7/13.3	71 117-170 Gev 200-720 Gev	$m(\tilde{\chi}_{1}) = 2m(\tilde{\chi}_{1}), m(\tilde{\chi}_{1}) = 55 \text{ GeV}$	1209.2102, ATLAS-CONF-2016-077
S S	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$	$0-2 e, \mu$	0-2 jets/1-2 b	Yes 2	20.3/36.1	r 90-198 GeV 0.195-1.0 TeV	$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	1506.08616, 1709.04183, 1711.11520
E D	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$	0	mono-jet	Yes	36.1	<i>ι</i> 90-430 GeV	$m(\tilde{t}_{i}) - m(\tilde{t}_{i}^{0}) = 5 \text{ GeV}$	1711 03301
S g	Ti Ti (natural GMSB)	$2e_{\mu}(Z)$	1 b	Vec	20.3	Ĩ. 150.600 CeV		1400 5000
lire	1. L L . L . Z	$2 c_{1} \mu (2)$	1 1	Vee	20.5		m( <i>t</i> ₁ )>150 GeV	1403.5222
ωÞ	$r_2 r_2, r_2 \rightarrow r_1 + Z$	$Se, \mu(Z)$	1 0	res	36.1	t ₂ 290-790 GeV	m( $\tilde{\chi}_{1}^{0}$ )=0 GeV	1706.03986
	$t_2 t_2, t_2 \rightarrow t_1 + h$	1-2 <i>e</i> , µ	4 b	Yes	36.1	<i>i</i> ₂ 320-880 GeV	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$	1706.03986
	2 2 2 200	2	0		00.4		-0	
	$\ell_{L,R}\ell_{L,R}, \ell \rightarrow \ell \ell_1$	$\geq e, \mu$	0	Yes	36.1	2 90-500 GeV	$m(\tilde{\chi}_1^0)=0$	ATLAS-CONF-2017-039
	$\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu})$	2 e, µ	0	Yes	36.1	<i>x</i> [±] 750 GeV	$m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	ATLAS-CONF-2017-039
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\tau(\nu\tilde{\nu})$	2τ	-	Yes	36.1	χ [±] . 760 GeV	$m(\tilde{v}^{0}) = 0$ $m(\tilde{v}, \tilde{v}) = 0$ $E(m(\tilde{v}^{\pm}), m(\tilde{v}^{0}))$	1708 07875
*	$\tilde{y}^{\pm}_{\pm} \tilde{y}^{0}_{\pm} \rightarrow \tilde{z}_{\pm} y \tilde{z}_{\pm} f(\tilde{z}_{\pm}) f \tilde{z} \tilde{z}_{\pm} f(\tilde{z}_{\pm})$	304	0	Vac	36.1	2 [±] 2 ⁰	$m(x_1)=0, m(r, v)=0.5(m(x_1)+m(x_1))$	1708.07075
$\geq 8$	$z \pm z^0 \qquad \dots z^0 = z^0$	2.2	0.0 linto	les	50.1	A1:42 1.13 IEV m(2)=	$m(\chi_2), m(\chi_1)=0, m(\ell, \tilde{\nu})=0.5(m(\chi_1)+m(\chi_1))$	ATLAS-CONF-2017-039
目が	$\chi_1 \chi_2 \rightarrow W \chi_1 Z \chi_1$	2-3 e, µ	0-2 jets	Yes	36.1	x ₁ , x ₂ 580 GeV	$m(\tilde{\chi}_1^{\pi})=m(\tilde{\chi}_2^{0}), m(\tilde{\chi}_1^{0})=0, \tilde{\ell}$ decoupled	ATLAS-CONF-2017-039
0	$\tilde{\chi}_1^x \tilde{\chi}_2^o \rightarrow W \tilde{\chi}_1^o h \tilde{\chi}_1^o, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma$	$e, \mu, \gamma$	0-2 b	Yes	20.3	$\tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{"}$ 270 GeV	$m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0, \tilde{\ell}$ decoupled	1501.07110
	$\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R}\ell$	$4 e, \mu$	0	Yes	20.3	$\tilde{\chi}_{21}^0$ 635 GeV m( $\tilde{\chi}_{21}^0$ )=r	$m(\tilde{X}_{2}^{0}) = m(\tilde{X}_{2}^{0}) = 0 = m(\tilde{\ell} = \tilde{v}) = 0 = 5(m(\tilde{X}_{2}^{0}) + m(\tilde{Y}_{2}^{0}))$	1405 5086
	GGM (wino NLSP) weak prod $\tilde{\chi}^0_{\to}$	$\sqrt{G} = 1e_{\mu} + \gamma$	-	Ves	20.3	Ŵ 115-370 CeV	arc1mm	1400.0000
	CCM (bine NI CD) week great 50	ã 2×		Vac	20.0	110-070 GeV		1507.05493
	GGM (bind NLSP) weak prod., $\chi_1 \rightarrow \chi_2$	γG 2γ		res	36.1	W 1.06 IEV	cr<1mm	ATLAS-CONF-2017-080
	Direct $\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$	Disapp. trk	1 jet	Yes	36.1	χ [±]		1710.00110
	Direct $\tilde{v}^+_{+}\tilde{v}^{-}$ prod. long fund $\tilde{v}^\pm_{-}$	dE/dy.tek		Vee	10.1		$m(\ell_1)-m(\ell_1) \sim 160 \text{ MeV}, \tau(\ell_1)=0.2 \text{ ns}$	1712.02118
	Steble stepped 2 D hadres	UE/UX LIK	4.5.1.1	res	10.4	495 GeV	$m(\chi_1^{-})-m(\chi_1^{-})\sim 160 \text{ MeV}, \tau(\chi_1^{+})<15 \text{ ns}$	1506.05332
s 90	Stable, stopped g H-hadron	0	1-5 jets	Yes	27.9	8 850 GeV	$m(\tilde{\chi}_1^0)=100 \text{ GeV}, 10 \ \mu s < r(\tilde{g}) < 1000 \text{ s}$	1310.6584
ie s	Stable g R-hadron	trk	-	-	3.2	ž 1.58 TeV		1606.05129
E d	Metastable g R-hadron	dE/dx trk	-	-	3.2	ž 157 ToV	$m(\tilde{x}_{0}^{0}) = 100 \text{ GeV}$ = 10 m	1604.04500
a Z	Metastable & R-bodron & sector	displ vtv		Vee	22.0	3		1004.04020
PLO	inclusion g n-hauton, $g \rightarrow qq r_1$	1.0		105	32.0	2.37	$\tau(g)=0.17 \text{ ns}, m(k_1) = 100 \text{ GeV}$	1710.04901
	GMSB, stable $\tilde{\tau}, \chi_1 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$	1-2 µ	-	-	19.1	21 537 GeV	10 <tanβ<50< td=""><td>1411.6795</td></tanβ<50<>	1411.6795
	GMSB, $\tilde{\chi}_1^{\nu} \rightarrow \gamma \tilde{G}$ , long-lived $\tilde{\chi}_1^{\nu}$	2γ	-	Yes	20.3	<i>x</i> ₁ " 440 GeV	$1 < \tau(\tilde{\chi}_1^0) < 3$ ns, SPS8 model	1409.5542
	$\tilde{g}\tilde{g}, \tilde{\chi}^0_1 \rightarrow eev/e\mu v/\mu\mu v$	displ. ee/eµ/µ	μ -	-	20.3	$\tilde{\chi}_{1}^{0}$ 1.0 TeV	$7 \le c_{T}(\tilde{\chi}_{1}^{0}) \le 740 \text{ mm} \text{ m}(\tilde{a}) = 1.3 \text{ TeV}$	1504.05162
			-				1 Ser(e1) S 140 mm, m(g)=1.0 100	1004.00102
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	$e\mu, e\tau, \mu\tau$	-	-	3.2	ν _τ 1.9 TeV	$\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$	1607,08079
	Bilinear RPV CMSSM	$2 e_{\mu} (SS)$	0-3 h	Yes	20.3	ũ, ĩ 1 45 ToV	$m(\tilde{a})=m(\tilde{a})$ creations from	1404 0500
	v+v-v+ v+ vvv0 v0	4		Van	10.0	ct 1.45 TBY	-0	1404.2500
	$x_1x_1, x_1 \rightarrow wx_1, x_1 \rightarrow eev, e\mu v, \mu\mu v$	4 ε,μ		res	13.3	1.14 TeV	$m(\chi_1)>400 \text{GeV}, \ \lambda_{12k}\neq 0 \ (k=1,2)$	ATLAS-CONF-2016-075
>	$X_1X_1, X_1 \rightarrow WX_1, X_1 \rightarrow \tau \tau v_e, e \tau v_\tau$	$3e, \mu + \tau$	-	Yes	20.3	X1 450 GeV	$m(\tilde{\chi}_{1}^{0}) > 0.2 \times m(\tilde{\chi}_{1}^{\pm}), \lambda_{133} \neq 0$	1405.5086
d	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qaq$	0 4	5 large-R jets	5 -	36.1	ĝ 1.875 TeV	$m(\tilde{\chi}_{1}^{0})=1075 \text{ GeV}$	SUSY-2016-22
LL L	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow t\tilde{t}\tilde{\chi}^0, \tilde{\chi}^0 \rightarrow qqq$	1	-10 jets/0-4 b	-	36.1	2	m(5 ⁰ ) 1 TeV 1	1704.00400
	$\tilde{a}$ $\tilde{a} \rightarrow \tilde{t} + \tilde{t} \rightarrow h t$	1	10 jota/0 4 /		00.1	2.1 lev	$m(x_1) = 1$ IeV, $x_{112} \neq 0$	1704.08493
	88,8-11,11-03	1 <i>e</i> ,µ 8	- 10 jets/0-4 b	-	36.1	g 1.65 TeV	$m(t_1) = 1 \text{ TeV}, \lambda_{323} \neq 0$	1704.08493
	$t_1 t_1, t_1 \rightarrow bs$	0	2 jets + 2 b	-	36.7	i 100-470 GeV 480-610 GeV		1710.07171
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$	2 e, µ	2 b	-	36.1	0.4-1.45 TeV	$BR(\tilde{t}_1 \rightarrow be/\mu) > 20\%$	1710.05544
	0							
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_{1}^{0}$	0	2 c	Yes	20.3	č 510 GeV	m(X ⁰ )<200 GeV	1501.01325



#### **0-fermion and 2-fermion operators in "Warsaw basis"**

	$X^3$		$\varphi^6$ and $\varphi^4 D^2$		$\psi^2 arphi^3$
$Q_G$	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$Q_{\varphi}$	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
$Q_W$	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 arphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	$Q_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	$Q_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	$Q_{uG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi}  G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	$Q_{uW}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	$Q_{uB}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{arphi \widetilde{B}}$	$arphi^{\dagger}arphi\widetilde{B}_{\mu u}B^{\mu u}$	$Q_{dG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi  G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	$Q_{dW}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	$Q_{dB}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Here,  $\varphi = H$ ;  $p, r, \dots =$  flavor indices (so  $p = r \rightarrow$  flavor universal)

### 4-fermion operators in "Warsaw basis"

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
$Q_{ll}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	$Q_{ee}$	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	$Q_{le}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	$Q_{uu}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{lu}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{dd}$	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{ld}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	$Q_{eu}$	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{qe}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{ed}$	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -viol	ating	
$Q_{ledq}$	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	$Q_{duq}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right.$	$^{T}Cu_{r}^{\beta}$	$\left[ (q_s^{\gamma j})^T C l_t^k \right]$
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	$Q_{qqu}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(q_{p}^{\alpha j}\right)\right.$	$^{T}Cq_{r}^{\beta k}$	$] \left[ (u_s^{\gamma})^T C e_t \right]$
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[\left(q_{p}^{\alpha}\right)\right]$	$(j)^T C q_r^{\beta}$	$\left[ (q_s^{\gamma m})^T C l_t^n \right]$
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{lphaeta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}$	$\left[(q_p^{\alpha j})^T\right]$	$\left[Cq_r^{\beta k}\right] \left[(q_s^{\gamma m})^T C l_t^n\right]$
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	$Q_{duu}$	$\varepsilon^{\alpha\beta\gamma} \left[ (d_p^{\alpha})^T \right]$	$Cu_r^{\beta} ] \Big $	$\left[(u_s^{\gamma})^T C e_t\right]$

Implemented in MadGraph UFO models via SMEFTsim, SMEFT@NLO







LHC SMEFT analysis goal:

from pattern in deviations, determine  $\Lambda$ 

8

4

-4

-6



[Ellis et al 2012.02779]





Relative constraining power (%)		
	<i>tt</i> V – – – – – – – –	
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		single
<b>- - - - - - - - - -</b>	tti         	
I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <td< td=""><td>4C Zjj – – – – – – – –</td><td>LHC</td></td<>	4C Zjj – – – – – – – –	LHC
	C W I I I I I I I I I I I I I I I I I I I	LHC
		v
I I A A A A A A A A A A A A A A A A A A	0 10 00 16 0A I I I A	Bin 3
I       1       2         I       2       2         I       2       2         I       1       2         I       1       2         I       1       2         I       1       2         I       1       2         I       1       1         I       1       1         I       1       1         I       1       1         I       1       1         I       1       1         I       1       1         I       1       1	1. UH 15 13 7 5 21	Run 1
-       -       -       2       2       1       -       -       5       -       -       3       -       4       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	PWW	LEP
99 95 99 - 74 18 73 7 - 7 - 94 - 65 90 2 - 4 - 1 - 1	EWPO 6 35 59 - 99 95 99 -	Ē
	C ⁸ .	
	C ^B _{tu} .	
	$C_{Oa}^{1,8}$ .	~
	$C_{Qq}^{3,8}$ .	~
		Top 4F
	C+w-	
	Ct ₆ .	
	CHt -	
	C(1)	
	CHO-	Top 2F
	C#.	
	С _{ьн} .	
	C _{µH} .	
		Yukawa
	C _G .	
	C _W .	
	CHB	
	C _{HW} -	_
	C _{HG} .	
	CHBox .	
		Rosonic C
	C ₁₁₁ .	
	C _{Hd}	
	C(3)	
	C _{He} .	
	C ₁ .	
	C _{HD} .	
	CHWB	EWFO C
	10.0	
	Λ,	۸.
		[]
	eV	<u>م</u>
	'] 	וי
$2\sigma$ bound on $\Lambda_i$ , $a_{ij}c_j = 1$		
	100 3	
Eigenvectors		

[Ellis et al 2012.02779]



## Looking for heavy new physics





### Looking for heavy new physics

