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Pick up where we left off

— Real devices
— The effects of radiation damage

Explore breadth of current and future detectors
— The present: CMS, ATLAS, LHCb

— The current future

= Pixel and strip detector upgrades
= LGAD timing detectors

— The future future

= MAPS and flexible detectors
= smartpixels
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Up-close view of a test device
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Close-up of a
CMS Phase 2
pixel sensor
prototype
bump-bonded
to an RD53A
sensor

note the
_ delicate
wirebonds

and test points
for checking
voltages
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Low voltage and ASIC tuning

LV = low voltage, powers the ASI/C (readout chip)

ASIC has numerous registers that control threshold (global and
per-pixel or per-strip), gain (DAC output = electrons map), etc

Use internal charge injection circuits to calibrate the response
Example: threshold tuning for a CMS Phase 2 pixel prototype
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High voltage and I-V curves
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HV = high voltage, depletes the
sensor

— Planar devices: up to 120V
unirradiated, up to 800V irradiated

— 3d devices: up to 30-40V

unirradiated, up to ~120V
irradiated

Current is called a “leakage
current’

— range nA (unirradiated planar

sensor) to 10s of uA (irradiated
sensors)

Leakage currents are strongly
temperature dependent

— A good way to test the HV
connection is to see if the leakage
current changes with the
temperature.
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unirradiated CMS prototype planar pixel sensor
(temp unknown) from NIM A1053 (2023) 168326
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https://doi.org/10.1016/j.nima.2023.168326

“NIEL hypothesis” of lattice damage

- Silicon detectors still
susceptible to
radiation damage

LHC-relevant range
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https://doi.org/10.1109/TNS.2018.2819506

Leakage current increases
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- Damage to crystal lattice complicates the band structure with
intermediate states

— Trapping centers reduce charge collection efficiency
— Generation centers increase leakage current (proportional to fluence)
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Depletion requires more voltage

- Lattice structure damage also changes effective doping concentration
— Example: Vacancy + phosphorous removes the donor property of P
— Many competing effects
— Space charge sign inversion, sometimes referred to as “type inversion”

- Primary effect is on depletion voltage - much more required to operate
sensor at full efficiency
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Annealing helps (and then hurts)

- Annealing also changes the effective doping concentration (N)

- Competing effects with different time constants
— “Beneficial” annealing: recombination of vacancy and interstitial (¢ ~ hours)
— “Reverse” annealing: more complex defects can combine (t ~ days)

= V+V - double vacancy (charge trapping), vacancy + impurity
- Thermal process: vacancies and interstitials are mobile
— Reason to keep silicon detectors cold (-20C -> -35C)
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Sensor doping and radiation

n-type silicon after high fluences: p-type silicon after high fluences:
(type inverted) (still p-type)
+on- nton- .
pTon-n S P n'strips

|| I N S

Undepleted region

Hole drift
Hole drift

Active region

Active region

Electron drift
HL-LHC pixels
Undepleted region

Electron drift

n'layer
Traversing particle Traversing particle

p-on-n silicon, under-depleted: n-on-p silicon, under-depleted:

e Charge spread — degraded resolution eLimited loss in CCE

e Charge loss — reduced CCE eLess degradation with under-depletion

eCollect electrons (3 x faster than holes)

Comments:
- Instead of n-on-p also n-on-n devices could be used Michael Moll

TZIL3 & *as they are in current CMS pixels s July 29-30, 2024



Rad-hard design: planar and 3D

- Change to n-in-p (previous slide)
- Reduce the drift length through the sensor geometry to mitigate
radiation damage
— Thinner planar sensors (CMS Phase 2 is 150 um)

— Change the drift path from transverse to parallel to sensor surface
= Maintain signal amplitude, which is proportional to sensor depth

thin-planar sensor 3D sensor

> drift length L<200um “"‘-—';-— > shorter drift length L o i
(now: 300um) < e,'g g" > |ower depletion voltage o
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Key metric: Efficiency

N (tracks with matched clusters)

Efficiency =

N (tracks)
- Answers the question: if there should be a hit there, is there one?
- Should be > 99% for unirradiated devices
- Increases with bias voltage
— unirradiated planar devices can be nearly fully efficient at 0V
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https://doi.org/10.1016/j.nima.2023.168326

Radiation and electronics

- Electronics are also sensitive to radiation, but differently so
— EM damage = the “dose”, vs. fluence for the sensors
— Typically tested through exposure to x-ray and gamma photons
- Single-event upset (SEU) — flipped bit

— Guard against through “triple modular redundancy” for important registers:

majority vote of three replicas

—— - Damage to transistors — affects
* Dose adjusted for copper layers SW'tCh | ng t| me

— Shrink transistor size (130 nm 2>
65 nm)

- Dose rate dependence is a
standing concern

20 krad/h
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Relative increase in gate delay [%]

r o 8 e 80 krad/h : . : .
° ? . ATLAS pixel chip in X-ray irradiations
= . . .
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https://arxiv.org/abs/2404.10963v1

CMS Outer tracker: Si strips

« First hadron collider detector
to use all-silicon tracking —
unprecedented scale
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CMS inner tracker: Si pixels

“Phase 17 pixel detector installed early 2017

— Challenges, but handles the current data rates, + improved
performance

End disk volume Barrel volume
3 disks per side 4 layers

forward pixel “fans”, built
at Fermilab

Barrel supply tube Barrel end flange Outer rings Inner rings
Barrel cabling & tubing

Angle detector modules to optimize
charge sharing for improved position
measurements (nonzero incidence;
Lorentz angle)
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Tracking performance at CMS

CMS simulation CMS simulation
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Harder to measure curvature of Harder to extrapolate lower-momentum
straighter (higher-momentum) tracks tracks: scattering in material matters

For CMS:
magnetic field B=3.8 T
trackerradiusL=1.2m

curvature multiple scattering NYmber of measurements N >10
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\ Silicon d tectors: ATLAS

. Vi SCT barrel
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ATLAS: the IBL

THE

r =42.5 mm : IBL Support Tube (IST)

“Insertable Barrel Layer” placed
between previous innermost layer
and beampipe in summer 2014

r =33 mm : IBL Stave

3_ _r=29.3 mm : Inner Positioning Tube (IPT)

| ////; 4 \\ r = 24.3 mm : New Beam Pipe . . .
\\ Q \‘ \/ﬁ D ) — Reduced pixel size in Z 400 2 250 um
\ \\\ \31& ,/ ) ! \\ — First use of 3d pixels in a collider
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Silicon detectors: LHCb “VELO”
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- Upgraded microstrip = pixel detector for vertexing in LS2
— p-in-n sensors, 55 x 55 um? pitch

- Retractable, moved into place for stable beams, encircling the interaction
point 5 mm from beam

- micro-channel CO, cooling etched into wafers

https://cerncourier.com/a/velos-voyage-into-the-unknown/
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HL-LHC and beyond

Peak luminosity [1 034cm’23‘1]
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CMS Pixels for the HL-LHC

- Thinner sensors: 300 2> 150 um
 Shrink the pixels 100 x 150 um? - 25x100 um?

- and build a bigger detector
: . . current
— 3 2 12 pixel disks on each side —

|e—150 pm__

—>| wi g0} |e—

pixel
— Coverage |n| < 2.4 2 |n| <4.0
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CMS Pixels for the HL-LHC

Thinner sensors: 300 -2 150 um
Shrink the pixels 100 x 150 um? 2> 25x100 um?

and build a bigger detector
: . . current
— 3 2 12 pixel disks on each side e —
— Coverage |n| < 2.4 2 |n| <4.0

|e—150 pm__

—>| wi g0} |e—
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The CMS Phase 2 sensors

- The short direction measures the global phi coordinate, and the long
direction measures z (R) in the barrel (endcap).

- Reasons: marginally better impact parameter measurement (compared
to 50x50 um?) and smaller cluster size at the edges of the barrel (data
rate considerations)

PixC-25x100-P1:
*No bias
-Higher efficiency in TB for “max. implant designs”
=|mplant width increased from 9 pm to 11 um
- “Bitten” design to reduce cross talk
«Metal overhang: 2 um

Planar sensor Cut1 Cut2
diagram from Jérn
Schwandt
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https://indico.cern.ch/event/1233335/contributions/5189003/attachments/2569983/4431330/js_HPK_Review_20221220.pdf
https://indico.cern.ch/event/1233335/contributions/5189003/attachments/2569983/4431330/js_HPK_Review_20221220.pdf

3d pixel sensors for CMS

- 3D is chosen for the innermost barrel layer for radiation hardness and
critically smaller power dissipation

— Leakage currents grow with irradiation, and cooling capacity is finite

-sto
Column diameter iy
~8 um l
SI0, \
7 &
150pm . Highp \ 1 - ----------------------- -
p+ . pt 1 L]
- 1 ]
L : D -
I 3 1
e/ol length : l
100pm Low S .‘
- 130 pm ’ . :
| 1
1 & 1
o o 1
HV 1 ]
‘,/ l; ------------------------ L
(a) »
Figure 5: Schematic view of two adjacent pixel cells, together with the
ol Tiksraias routing from the bump pads, between cells, to the junction columns,
“Spm e _ins{sesslieessJesceliossnsersasenssssssnssgsnce near the center of the pixel cells.
Active thicknes:
. ZG:::m X 100 - 150 um
Handle wafer
[T Thickness
o) ~500 um Metal to be deposited after thinning  pagidual Handle
> Handle wafer to be thinned ~ Wafer Thickness
= 50 - 100 um
0
22 & (b) o _
R publication forthcoming
IZ= T
FD2=2<qU
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Outer tracker = L1 track trigger

- Use the bending of tracks in the magnetic field to distinguish between
low- and high-py tracks

- Closely-spaced sensors allow correlation of hits between layers
— Design overall tracker geometry to account for track intersection with layers

“stub”’ ass fail
(a) — &
1+4 mmI O] ﬁ
yI EERERRD B ERNERRRNEERER RERERRRERR of:4
Z X 5?00,um N
B - (b)
Ar e ]I./Il/
(c) | | '}
yt x C Az=Ar/tg 9 : * L.P.
Z
'c:> barrel vs endcap, view from the side: larger barrel, view
5w o spacing needed down beamline
wo 9 . .
422 O track trigger review paper
TZ-=I
=2=<0
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https://doi.org/10.1146/annurev-nucl-020420-093547

Si Strip detector of “p; modules”
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Prototypes demonstrate ability to resolve momentum*

* No magnetic field at the testbeam so
turn the module to simulate the
bending

Stub reconstruction efficiency

CMS Tracker group JINST 18 P04001 (2023)

—e— 4 strips
—— 5 strips
—— 6 strips

24 2.6

2.8
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https://iopscience.iop.org/article/10.1088/1748-0221/18/04/P04001

OT Built for the track trigger
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One quarter of the OT layout
with modules colored by sensor
separation distance (grey is not used in

the trigger)

- smallest separation in the barrel

CMS Phase 2 tracker TDR

Numbers give the size of the

acceptance window in
N(strips)

- smaller values at lower R
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https://cds.cern.ch/record/2272264

Sharper turn-on curves = lower thresholds
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Efficiency

Improved trigger performance directly affects physics capabilities

— Starting from the hardware design
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https://cds.cern.ch/record/2272264

ATLAS goes all-in on silicon

R [mm]
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https://cds.cern.ch/record/2285585
https://cds.cern.ch/record/2257755

Four-dimensional vertexing?

- Focused thus far on three-dimensional reconstruction, but these 200
events per bunch crossing are also distributed in time in an uncorrelated
way — but need time resolution in 10s of picoseconds

A . Simulated Vertices
~ 0.6 3D Reconstructed Vertices
' —=6—— 4D Reconstruction Vertices
—+—— 4D Tracks
04—
0.2—
- +¢
O I
-0.2 {’) QJ % # if
04—
L | 1 1 1 | I I |

e https://cds.cern.ch/record/2667167
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https://cds.cern.ch/record/2667167
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Sensors for precision timing

« LGAD = Low Gain Avalanche Diode

— Charge multiplication --> fast rise time of induced signal --> precision
timing

Cathode
Ring

T Principle:
,lo Add to n-on-p Silicon sensor an extra
Depletion lh thin p-layer below the junction which

Region

increases the E-field so that charge
multiplication with moderate gain of 10-
n 50 occurs without breakdown.

f

— Anode
Ring

Timing characteristics depend on
both the bulk (i.e. thickness) and
the multiplcation layer.

https://indico.cern.ch/event/577879/contributions/2740418/
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https://indico.cern.ch/event/577879/contributions/2740418/

MIP Timing Detector

- Single layer surrounding entire CMS detector
— LGADs for forward detector,

- Technological proof-of-concept: performance as needed even
after irradiation
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100~  HPK D50 & 50C Timing Resolution, -20C
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ALICE ITS3: CMOS

- Another future path is material reduction: no bump bonding, low-
power electronics, no active cooling (no metal tubes)

- ALICE experiment focuses on nuclear physics, so lower-momentum
(< 1 GeV) tracks are important
— Muiltiple scattering dominates momentum resolution at these momenta,

motivating aggressive material reduction 0.05% X, per layer (compare to
CMS pixel barrel at ~2.5% X, per layer)

Gap in deep n-implant: Sth|i[nd rilch |
-6V 08V -6V ructural She
M * \ﬂ Half Barrels /
Eeshiwell Deep P-well N
N.

P-type epitaxial layer
P+ substrate

Backside voltage

https://iopscience.iop.org/article/10.1088/1748-0221/14/05/C05013
ITS3 Letter of Intent https://cds.cern.ch/record/2703140/files/LHCC-I-034.pdf
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Silicon works after bending
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- Beam tests of partial detectors have been successful

ProjectionX of biny=21 [y=0.0..1.0]
slice_px_of_residualsXvsXhit

300/ Entries 17025
[ Mean 0.0004285
Std Dev 0.006956

6 =652 um

Number of Entries

901 -0.08 -0.06 -0.04 X 0 0.02 0.04 0.06

0.08 0.
Xyac e [MM]

Spatial resolution reasonable for 10 um pitch

Installation planned for HL-LHC

tracks through the detector

https://indico.cern.ch/event/1044975/contributions/4663684/

CHICAGO
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What are smartpixels?

- Can be used to infer
transverse momentum or
regress track angles, given
sufficiently granular pixels

- Read out cluster information
- data reduction at the source
(detector) using ML

- Two strategies

0.25 4

Fraction of cluster charge

0.05 A

0.00

0.20 A

0.15 A

0.10 4

1 Low pr (pos)
1 Low pr (neg)

4 6
y [pixels]

— Filter: reject tracks with low (< Wi
200 MeV) pT
— Regression: infer track position
and angles
G
: ......................................
22 8
£52%5 c. mills
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Snapshot: p; filter

Pr Filter

pr filter with full precision inputs

UNIVERSITY OF

THE

1.00 ~ T P . —t
EIRRRANS (Y {'fw% aaek
« Full precision network: Fosof—t b b Pty ety {
S oy
1. Projected cluster size only. N ¢ ¥
Minimal information ; «— i 3
2. Projected cluster shape, integrated over 4ns. < °%1 hﬁ
Selected for implementation g
. . . © 0.204 + yprofile with timing info
3. Projected cluster shape at 8 200ps time points. i e
5-10% gain in signal efficiency 0.00 L— L . .
-4 -2 0 2 -
true Pr (GeV)
 Signal efficiency
How much of the py> 2 GeV sample do we keep? Model Sig. efficiency Bkg. rejection
o Model 1 84.8 % 26.6 %
« Background rejection Model 2 93.3 % 25.1 %
|
_ Model 3 97.6 % 21.7 %
How much of the p; <2 GeV sample do we discard?
$& Fermilab
25 12/06/2023 Jennet Dickinson | Smart Pixels
w o https://arxiv.org/abs/2310.02474
S g
Z
e oF - .
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pr filter on an ASIC, performance

1.00 - ¥ ADC output Charge interval [e]

S ¢ t 00 < 400

0.90 - " r +

. t t tyd fﬁfﬁ +ﬁﬁ¥ 3 # { 01 400 — 1600

} v & 10 1600 — 2400
< b 11 > 2400
éaw- tt
% i 3: Mapping between 2-bit ADC output and collected charge.
& 0.40 1
i . Digitization
AR 4+ 5-bit weights, 10-bit activ. g
““U1| + 4-bit weights, 8-bit activ. | ) .k ”
S e — Of charge: 2-bit “flash” ADC
2-bit weights, 6-bit activ.
1op LT T weights. 4-bit acti t | , — Of weights and activation: choose 4-bit
- T e 2 ¢ weight + 8-bit activation
T T (GeV)

- Preliminary estimate: 54-75% data reduction

— Includes single-pixel hits (noise), loopers, and low-pT tracks rejected by the
algorithm

— Most rejection comes from “untracked” clusters

o = 55-60% of data, work ongoing to understand these better
>
50 o — Based on simulation, hope to look at min-bias and testbeam data in the future
€= @
22 § https://arxiv.org/abs/2310.02474
TZ2T
=2=<0

&
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True - predicted x [um]

True - predicted a [deg]

UNIVERSITY OF
ILLINOIS

THE
AT

Snapshot: parameter regression

15 A

10 A

CHICAGO

—O = o
o o — —
o ()
-50 0 50
True x [um]
e—o L 1 g o i
=
0 50 100 150
True a [deq]

True - predicted y [um]

True - predicted B [deg]

@

-10

10

20

70

80 90
True B [deg]

100

B = angle in the bending plane

Use time-sliced information
with convolutional layers to
predict not just local
position and angles but
their uncertainties as
well.

Hit position x, y

Pattern of bias repeats across each pixel
Mean predicted uncertainties:

<gy>= 5.7um

<g,>=1.1pum

Angles q, 8
Largest uncertainty near a=90° due to single pixel hits

Dataset covers limited range in 8

<Qgy>= 3.8 ——

=17° I
Colors represent hlsdml synthesized (orange <Qp> |
cross-hatched) vs. QKeras (blue) — both quantized T 90
0" € > 180°
https://arxiv.org/abs/2312.11676
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Summary and outlook
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|s particle tracking a “solved” problem? No!

Numerous advances in capabilities in the last 10 years
— Improved sensor engineering and fabrication
» Fast precision timing
= 3d pixels
» MAPs and ultra-lightweight detectors

— Pushing computation towards the detector

= Track trigger
= Smart pixels

Don'’t lose sight of older ideas and technologies, either
— eg. PID from transition radiation

— Old ideas have a way of coming back around, and different collider
configurations have different demands (and opportunities)

Your generation of physicists will launch the next generation of collider
detectors

— Keep alive the tradition of innovation combined with attention to detail
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Silicon References
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Thanks to Julia Thom for her notes, slides, and resources that got me started with
giving this sort of lecture

Frank Hartmann’s summer school lectures (LPC 2014 etc)

Evolution of Silicon Sensor Technology in Particle Physics, Second Edition
(2017), Frank Hartmann, Springer Tracts in Modern Physics

Detectors in Particle Physics: A Modern Introduction (2024), Georg Viehhauser,
Tony Weidberg, CRC Press

— pdf available at https://www.taylorfrancis.com/books/oa-

mono/10.1201/9781003287674/detectors-particle-physics-tony-weidberg-qgeorqg-viehhauser
CMS Run1 tracking: https://arxiv.org/pdf/1405.6569.pdf JINST 9 P10009

CMS Phase 2 tracker TDR: https://cds.cern.ch/record/2272264

ATLAS ITk pixel TDR; ITk strips TDR

3D sensors for IBL: https://doi.org/10.1016/j.nima.2012.07.058

Moll review on radiation damage, https://doi.org/10.1109/TNS.2018.2819506
Track trigger review paper: https://doi.org/10.1146/annurev-nucl-020420-093547
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https://arxiv.org/pdf/1405.6569.pdf
https://cds.cern.ch/record/2272264
https://cds.cern.ch/record/2285585
https://cds.cern.ch/record/2257755
https://doi.org/10.1016/j.nima.2012.07.058
https://doi.org/10.1109/TNS.2018.2819506
https://doi.org/10.1146/annurev-nucl-020420-093547

Additional References

PDG reviews

— Passage of Particles through Matter https://pdgq.Ibl.qov/2023/reviews/rpp2023-rev-passage-
particles-matter.pdf

— Particle Detectors at Accelerators https://pdq.Ibl.gov/2023/reviews/rpp2023-rev-particle-
detectors-accel.pdf

- Charge deposition (energy loss) in thin materials (Bischsel)
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.60.663

- Shockley-Ramo Theorem: NIM A Volume 463, Issues 1-2, 1 May 2001, Pages
250-267

- TRT performance in Run 1:
https://atlas.web.cern.ch/Atlas/ GROUPS/PHYSICS/PAPERS/IDET-2015-01/
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https://www.sciencedirect.com/science/journal/01689002/463/1
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How we reconstruct particles

| | 1 1 1 1 | |
Om m 2m im 4m 5m 6m 7m
Key:
- - Muon
Electron

=== Charged Hadron (e.g.Pion)

- = = = Neutral Hadron (e.g. Neutron)

® €

= = === Photon

AN

.

=
Silicon o=
Tracker TS
N8
. Electromagnetic
}:l " Calorimeter
Hadron
Calorimeter

Transverse slice
through CMS

Superconducting
Solencid

lron return yoke interspersed
with Muon chambers

UNIVERSIT
ILLINOIS

AT
CHICAGO

o

THE

c. mills

July 29-30, 2024

67

_— }\ ]

D Sarmey, CERN, Febwmary 2004



Pixel detector modules
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front end
electronics

-— bump connection

sensor

\particle track

CMS “Phase 1” module

https://doi.org/10.1016/j.nima.2016.03.030
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Identifying b-quark jets

- |dentify jets originating from b- quark by long lifetime of B hadrons

YT LHC beams

= orthogonal .
"g to thegscreen Pixel vertex deje
el a
7
C -
)
Q>J Oxy ~ 20 MM
< 0,~20-100 pm
]
)
>
A"
s
g Secondary vertices
Q reconstructed within

jets

»
>

A

Few mm
-+ For H to bb, typically 70% b-tagging efficiency
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