Tracking detectors at the LHC

corrinne mills

July 2024

Re-introduction

- Pick up where we left off
	- ® *Real devices*
	- ® *The effects of radiation damage*
- Explore breadth of current and future detectors
	- ® *The present: CMS, ATLAS, LHCb*
	- \rightarrow *The current future*
		- Pixel and strip detector upgrades
		- LGAD timing detectors
	- \rightarrow *The future future*
		- MAPS and flexible detectors
		- smartpixels

ERSITY OF

QPN

Up-close view of a test device

EDAILSE

Low voltage and ASIC tuning

- LV = low voltage, powers the *ASIC* (readout chip)
- ASIC has numerous *registers* that control threshold (global and per-pixel or per-strip), gain (DAC output \rightarrow electrons map), etc
- Use internal charge injection circuits to calibrate the response
- Example: threshold tuning for a CMS Phase 2 pixel prototype

High voltage and I-V curves

- \cdot HV = high voltage, depletes the *sensor*
	- \rightarrow Planar devices: up to 120V *unirradiated, up to 800V irradiated*
	- \rightarrow 3d devices: up to 30-40V *unirradiated, up to ~120V irradiated*
- Current is called a "leakage current'
	- ® *range nA (unirradiated planar sensor) to 10s of* µ*A (irradiated sensors)*
- Leakage currents are strongly temperature dependent

RSITY OF

 \rightarrow A good way to test the HV *connection is to see if the leakage current changes with the*

temperature. unirradiated CMS prototype planar pixel sensor (temp unknown) fro[m NIM A1053 \(2023\) 16832](https://doi.org/10.1016/j.nima.2023.168326)6

"NIEL hypothesis" of lattice damage

- Silicon detectors still susceptible to radiation damage
- Primary effect in sensors from *damage to the silicon crystal lattice*
- *Studied by hadron (usually p) bombardment of devices as a function of flux* Φ
- *Scale to units of 95 MeV neutron equivalent per cm2*
	- ® *Abbreviated to* $n_{\rm eq}/\text{cm}^2$

ERSITY OF

AGO

NIEL cross sections normalized to 95 MeV mb. Data collected Fig. $3.$ by A. Vasilescu and G. Lindstroem [22] based on [23]–[26] and private communications.

This and graphs on the following slides from Moll review on radiation damag[e, IEEE TNS \(2018](https://doi.org/10.1109/TNS.2018.2819506))

Leakage current increases

- Damage to crystal lattice complicates the band structure with intermediate states
	- \rightarrow *Trapping centers reduce charge collection efficiency*
	- ® *Generation centers increase leakage current (proportional to fluence)*

Depletion requires more voltage

- Lattice structure damage also changes effective doping concentration
	- Example: Vacancy + phosphorous removes the donor property of P
	- ® *Many competing effects*
	- ® *Space charge sign inversion, sometimes referred to as "type inversion"*
- Primary effect is on depletion voltage \rightarrow much more required to operate sensor at full efficiency

Annealing helps (and then hurts)

- Annealing also changes the effective doping concentration (N_{eff})
- Competing effects with different time constants
	- ® *"Beneficial" annealing: recombination of vacancy and interstitial (*^t *~ hours)*
	- \rightarrow "Reverse" annealing: more complex defects can combine ($\tau \sim$ days)
		- \blacktriangleright V+V \rightarrow double vacancy (charge trapping), vacancy + impurity
- Thermal process: vacancies and interstitials are *mobile*
	- ® *Reason to keep silicon detectors cold (-20C -> -35C)*

Rad-hard design: planar and 3D

- Change to n-in-p (previous slide)
- Reduce the drift length through the sensor geometry to mitigate radiation damage
	- ® *Thinner planar sensors (CMS Phase 2 is 150* µ*m)*
	- ® *Change the drift path from transverse to parallel to sensor surface*
		- Maintain signal amplitude, which is proportional to sensor depth

thin-planar sensor

- → drift length L<200µm $(now: 300µm)$
- \rightarrow n-in-p (e signal)
- outer and possibly also innermost layers/rings

3D sensor

- → shorter drift length L
- lower depletion voltage
- + technically more challenging
- + inner layer (at most one)

Key metric: Efficiency

 $Efficiency =$ N (tracks with matched clusters) N (tracks)

- Answers the question: if there should be a hit there, is there one?
- Should be > 99% for unirradiated devices
- Increases with bias voltage

® *unirradiated planar devices can be nearly fully efficient at 0V*

Radiation and electronics

- Electronics are also sensitive to radiation, but differently so
	- \rightarrow EM damage = the "dose", vs. fluence for the sensors
	- ® *Typically tested through exposure to x-ray and gamma photons*
- Single-event upset (SEU) flipped bit
	- \rightarrow Guard against through "triple modular redundancy" for important registers: *majority vote of three replicas*

- Damage to transistors affects switching time
	- \rightarrow shrink transistor size (130 nm \rightarrow *65 nm)*
- Dose rate dependence is a standing concern

ATLAS pixel chip in X-ray irradiations [arXiv:2404.10963 \[physics.ins-de](https://arxiv.org/abs/2404.10963v1)t]

CMS Outer tracker: Si strips

Pixel End cap -TEC-**Outer Barrel-TOE Inner Barrel-TII Inner Disks-TIE** $2,4$ m **RSITY OF** $5.4 m$

• First hadron collider detector to use all-silicon tracking – unprecedented scale

CMS inner tracker: Si pixels

- "Phase 1" pixel detector installed early 2017
	- \rightarrow Challenges, but handles the current data rates, $+$ improved *performance*

Angle detector modules to optimize charge sharing for improved position measurements (nonzero incidence; Lorentz angle)

ERSITY OF

QDA

forward pixel "fans", built at Fermilab

Tracking performance at CMS

Resolution in d_0 (μ m)
 $\frac{1}{2}$

 10

CMS simulation

 $-2.5 -2 -1.5 -1 -0.5$ 0

Harder to measure curvature of straighter (higher-momentum) tracks Harder to extrapolate lower-momentum tracks: scattering in material matters

 0.5

 $\overline{1}$

 1.5

 $\overline{2}$

 2.5

1 GeV

 $= 10$ GeV

 μ^{\pm} , p $\dot{ }$ = 100 GeV

COOCOOCOOCOOCOOCOO

Silicon detectors: ATLAS

ATLAS: the IBL

- "Insertable Barrel Layer" placed between previous innermost layer and beampipe in summer 2014
- Reduced pixel size in Z 400 \rightarrow 250 μ m
- ® *First use of 3d pixels in a collider experiment*

Silicon detectors: LHCb "VELO"

- Upgraded microstrip \rightarrow pixel detector for vertexing in LS2
	- \rightarrow *p-in-n sensors, 55 x 55* μ *m² pitch*
- Retractable, moved into place for stable beams, encircling the interaction point 5 mm from beam
- micro-channel $CO₂$ cooling etched into wafers

HL-LHC and beyond

CMS Pixels for the HL-LHC

- Thinner sensors: $300 \rightarrow 150 \mu m$
- Shrink the pixels 100 x 150 μ m² \rightarrow 25x100 μ m²
- and build a bigger detector → 3 → 12 pixel disks on each side \rightarrow Coverage $|\eta|$ < 2.4 \rightarrow $|\eta|$ < 4.0 **current pixel 150** µ**m 100** µ **m**

CMS Pixels for the HL-LHC

- Thinner sensors: $300 \rightarrow 150 \mu m$
- Shrink the pixels 100 x 150 μ m² \rightarrow 25x100 μ m²
- and build a bigger detector → 3 → 12 pixel disks on each side \rightarrow Coverage $|\eta|$ < 2.4 \rightarrow $|\eta|$ < 4.0 **current pixel 150** µ**m 100** µ **m**

The CMS Phase 2 sensors

- The short direction measures the global phi coordinate, and the long direction measures z (R) in the barrel (endcap).
- Reasons: marginally better impact parameter measurement (compared to 50x50 μ m²) and smaller cluster size at the edges of the barrel (data rate considerations)

3d pixel sensors for CMS

- 3D is chosen for the innermost barrel layer for radiation hardness and critically *smaller power dissipation*
	- \rightarrow Leakage currents grow with irradiation, and cooling capacity is finite

 (b)

**VERSITY OF
INOIS**

CAGO

Figure 5: Schematic view of two adjacent pixel cells, together with the routing from the bump pads, between cells, to the junction columns, near the center of the pixel cells.

Outer tracker \rightarrow L1 track trigger

- Use the bending of tracks in the magnetic field to distinguish between low- and high- p_T tracks
- Closely-spaced sensors allow correlation of hits between layers
	- ® *Design overall tracker geometry to account for track intersection with layers*

Si Strip detector of " p_T modules"

• Prototypes demonstrate ability to resolve momentum*

ERSITY OF

** No magnetic field at the testbeam so turn the module to simulate the bending*

$$
p_{\text{T}}[\text{GeV}] \approx \frac{0.57 \cdot R[\text{m}]}{\sin \beta}
$$

CMS Tracker group *JINST* 18 [P0400](https://iopscience.iop.org/article/10.1088/1748-0221/18/04/P04001)1 (2023)

OT Built for the track trigger

One quarter of the OT layout with modules colored by sensor separation distance (grey is not used in the trigger)

 \rightarrow smallest separation in the barrel

Numbers give the size of the acceptance window in N(strips)

 \rightarrow smaller values at lower R

CM[S Phase 2 tracker TDR](https://cds.cern.ch/record/2272264)

**VERSITY OF
NOIS**

CAGO

UIC

Sharper turn-on curves \rightarrow lower thresholds

- Improved trigger performance directly affects physics capabilities
	- ® *Starting from the hardware design*

ERSITY OF

ATLAS goes all-in on silicon

Four-dimensional vertexing?

• Focused thus far on three-dimensional reconstruction, but these 200 events per bunch crossing are also distributed in time in an uncorrelated way – but need time resolution in 10s of picoseconds

Sensors for precision timing

- LGAD = Low Gain Avalanche Diode
	- ® *Charge multiplication --> fast rise time of induced signal --> precision timing*

ERSITY OF

Principle: Add to n-on-p Silicon sensor an extra thin p-layer below the junction which increases the E-field so that charge multiplication with **moderate gain** of 10-50 occurs without breakdown.

Timing characteristics depend on both the bulk (i.e. thickness) and the multiplcation layer.

[https://indico.cern.ch/event/577879/contributions/274041](https://indico.cern.ch/event/577879/contributions/2740418/)8/

MIP Timing Detector

• Single layer surrounding entire CMS detector

→ LGADs for forward detector,

ERSITY OF

AGO

• Technological proof-of-concept: performance as needed even after irradiation

ALICE ITS3: CMOS

- Another future path is material reduction: no bump bonding, lowpower electronics, no active cooling (no metal tubes)
- ALICE experiment focuses on nuclear physics, so lower-momentum (< 1 GeV) tracks are important
	- \rightarrow *Multiple scattering dominates momentum resolution at these momenta, motivating aggressive material reduction 0.05%* X_0 *per layer (compare to CMS pixel barrel at ~2.5%* X_0 *per layer)*

ERSITY OF

Silicon works after bending

• Beam tests of partial detectors have been successful

Spatial resolution reasonable for 10 μ m pitch

ERSITY OF

Installation planned for HL-LHC

[https://indico.cern.ch/event/1044975/contributions/466368](https://indico.cern.ch/event/1044975/contributions/4663684/)4/

What are smartpixels?

- Can be used to infer transverse momentum or regress track angles, given sufficiently granular pixels
- Read out cluster information \rightarrow data reduction at the source (detector) using ML
- Two strategies

ERSITY OF

မ
ပ

- ® *Filter: reject tracks with low (< 200 MeV) pT*
- ® *Regression: infer track position and angles*

Snapshot: p_T filter

p_T filter with full precision inputs

- **Full precision network:** \bullet
	- 1. Projected cluster size only. **Minimal information**
	- 2. Projected cluster shape, integrated over 4ns. Selected for implementation
	- 3. Projected cluster shape at 8 200ps time points. 5-10% gain in signal efficiency
- **Signal efficiency** \bullet

25

AGO

ERSITYO

How much of the $p_T > 2$ GeV sample do we keep?

Background rejection \bullet

How much of the $p_T < 2$ GeV sample do we discard?

12/06/2023 **Jennet Dickinson I Smart Pixels**

춮 Fermilab

[https://arxiv.org/abs/2310.0247](https://arxiv.org/abs/2310.02474)4

filter on an ASIC, performance

3: Mapping between 2-bit ADC output and collected charge.

- **Digitization**
	- ® *Of charge: 2-bit "flash" ADC*
	- ® *Of weights and activation: choose 4-bit weight + 8-bit activation*
- Preliminary estimate: 54-75% data reduction
	- ® *Includes single-pixel hits (noise), loopers, and low-pT tracks rejected by the algorithm*
	- ® *Most rejection comes from "untracked" clusters*
		- 55-60% of data, work ongoing to understand these better
		- ® *Based on simulation, hope to look at min-bias and testbeam data in the future*

[https://arxiv.org/abs/2310.0247](https://arxiv.org/abs/2310.02474)4

ERSITY OF

AGO

Snapshot: parameter regression

Summary and outlook

- Is particle tracking a "solved" problem? *No!*
- Numerous advances in capabilities in the last 10 years
	- ® *Improved sensor engineering and fabrication*
		- Fast precision timing
		- 3d pixels
		- MAPs and ultra-lightweight detectors
	- \rightarrow Pushing computation towards the detector
		- Track trigger
		- Smart pixels

ERSITY OF

CAGO

- Don't lose sight of older ideas and technologies, either
	- ® *eg. PID from transition radiation*
	- \rightarrow Old ideas have a way of coming back around, and different collider *configurations have different demands (and opportunities)*
- Your generation of physicists will launch the next generation of collider detectors

 \rightarrow Keep alive the tradition of innovation combined with attention to detail

Silicon References

- Thanks to Julia Thom for her notes, slides, and resources that got me started with giving this sort of lecture
- Frank Hartmann's summer school lectures (LPC 2014 etc)
- *Evolution of Silicon Sensor Technology in Particle Physics*, Second Edition (2017), Frank Hartmann, Springer Tracts in Modern Physics
- *Detectors in Particle Physics: A Modern Introduction* (2024), Georg Viehhauser, Tony Weidberg, CRC Press
	- \rightarrow pdf av[ail](https://www.taylorfrancis.com/books/oa-mono/10.1201/9781003287674/detectors-particle-physics-tony-weidberg-georg-viehhauser)able [at https://www.taylorfrancis.com/books/oa](https://www.taylorfrancis.com/books/oa-mono/10.1201/9781003287674/detectors-particle-physics-tony-weidberg-georg-viehhauser)*[mono/10.1201/9781003287674/detectors-particle-physics-tony-weidberg-georg-viehhause](https://www.taylorfrancis.com/books/oa-mono/10.1201/9781003287674/detectors-particle-physics-tony-weidberg-georg-viehhauser)r*
- CMS Run1 trackin[g: https://arxiv.org/pdf/1405.6569.pd](https://arxiv.org/pdf/1405.6569.pdf)f *JINST* **9** P10009
- CMS Phase 2 tracker TD[R: https://cds.cern.ch/record/227226](https://cds.cern.ch/record/2272264)4
- ATLA[S ITk pixel TD](https://cds.cern.ch/record/2285585)[R; ITk strips TDR](https://cds.cern.ch/record/2257755)

ERSITY OF

AGO

- 3D sensors for IB[L: https://doi.org/10.1016/j.nima.2012.07.05](https://doi.org/10.1016/j.nima.2012.07.058)8
- Moll review on radiation damag[e, https://doi.org/10.1109/TNS.2018.281950](https://doi.org/10.1109/TNS.2018.2819506)6
- Track trigger review paper: [https://doi.org/10.1146/annurev-nucl-020420-09354](https://doi.org/10.1146/annurev-nucl-020420-093547)7

Additional References

- PDG reviews
	- ® *Passage of Particles through Matt[er https://pdg.lbl.gov/2023/reviews/rpp2023-rev-passage](https://pdg.lbl.gov/2023/reviews/rpp2023-rev-passage-particles-matter.pdf)[particles-matter.pd](https://pdg.lbl.gov/2023/reviews/rpp2023-rev-passage-particles-matter.pdf)f*
	- ® *Particle Detectors at Accelerator[s https://pdg.lbl.gov/2023/reviews/rpp2023-rev-particle](https://pdg.lbl.gov/2023/reviews/rpp2023-rev-particle-detectors-accel.pdf)[detectors-accel.pd](https://pdg.lbl.gov/2023/reviews/rpp2023-rev-particle-detectors-accel.pdf)f*
- Charge deposition (energy loss) in thin materials (Bischsel) [https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.60.66](https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.60.663)3
- Shockley-Ramo Theorem: NIM A Volume 463, Issues 1-2, 1 May 2001, Pages 250-267
- TRT performance in Run 1: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/IDET-2015-01/

How we reconstruct particles

Pixel detector modules

Identifying b-quark jets

• Identify jets originating from b- quark by long lifetime of B hadrons

