Tracking detectors at the LHC

corrinne mills

July 2024

Re-introduction

- Pick up where we left off
 - \rightarrow Real devices
 - \rightarrow The effects of radiation damage
- Explore breadth of current and future detectors
 - \rightarrow The present: CMS, ATLAS, LHCb
 - \rightarrow The current future
 - Pixel and strip detector upgrades
 - LGAD timing detectors
 - \rightarrow The future future
 - MAPS and flexible detectors
 - smartpixels

ERSITY OF

AGO

Up-close view of a test device

c. mills

ERSITY OF

Low voltage and ASIC tuning

- LV = low voltage, powers the ASIC (readout chip)
- ASIC has numerous *registers* that control threshold (global and per-pixel or per-strip), gain (DAC output → electrons map), etc
- Use internal charge injection circuits to calibrate the response
- Example: threshold tuning for a CMS Phase 2 pixel prototype

High voltage and I-V curves

- HV = high voltage, depletes the sensor
 - → Planar devices: up to 120V unirradiated, up to 800V irradiated
 - → 3d devices: up to 30-40V unirradiated, up to ~120V irradiated
- Current is called a "leakage current'
 - \rightarrow range nA (unirradiated planar sensor) to 10s of μ A (irradiated sensors)
- Leakage currents are strongly temperature dependent

RSITY OF

→ A good way to test the HV connection is to see if the leakage current changes with the temperature.

unirradiated CMS prototype planar pixel sensor (temp unknown) from <u>NIM A1053 (2023) 168326</u>

"NIEL hypothesis" of lattice damage

- Silicon detectors still susceptible to radiation damage
- Primary effect in sensors from damage to the silicon crystal lattice
- Studied by hadron (usually p) bombardment of devices as a function of flux Φ
- Scale to units of 95
 MeV neutron
 equivalent per cm²
 - \rightarrow Abbreviated to n_{eq}/cm^2

ERSITY OF

CAGO

Fig. 3. NIEL cross sections normalized to 95 MeV mb. Data collected by A. Vasilescu and G. Lindstroem [22] based on [23]–[26] and private communications.

This and graphs on the following slides from Moll review on radiation damage, IEEE TNS (2018)

c. mills

Leakage current increases

- Damage to crystal lattice complicates the band structure with intermediate states
 - \rightarrow Trapping centers reduce charge collection efficiency
 - → Generation centers increase leakage current (proportional to fluence)

Depletion requires more voltage

- Lattice structure damage also changes effective doping concentration
 - \rightarrow Example: Vacancy + phosphorous removes the donor property of P
 - \rightarrow Many competing effects
 - \rightarrow Space charge sign inversion, sometimes referred to as "type inversion"
- Primary effect is on depletion voltage → much more required to operate sensor at full efficiency

Annealing helps (and then hurts)

- Annealing also changes the effective doping concentration (N_{eff})
- Competing effects with different time constants
 - \rightarrow "Beneficial" annealing: recombination of vacancy and interstitial ($\tau \sim$ hours)
 - \rightarrow "Reverse" annealing: more complex defects can combine ($\tau \sim$ days)
 - V+V \rightarrow double vacancy (charge trapping), vacancy + impurity
- Thermal process: vacancies and interstitials are mobile
 - \rightarrow Reason to keep silicon detectors **cold** (-20C -> -35C)

Rad-hard design: planar and 3D

- Change to n-in-p (previous slide)
- Reduce the drift length through the sensor geometry to mitigate radiation damage
 - \rightarrow Thinner planar sensors (CMS Phase 2 is 150 μ m)
 - \rightarrow Change the drift path from **transverse** to **parallel** to sensor surface
 - Maintain signal amplitude, which is proportional to sensor depth

thin-planar sensor

- → drift length L<200µm (now: 300µm)
- → n-in-p (e signal)
- → outer and possibly also innermost layers/rings

3D sensor

- → shorter drift length L
- lower depletion voltage
- → technically more challenging
- inner layer (at most one)

Key metric: Efficiency

Efficiency = $\frac{N(\text{tracks with matched clusters})}{N(\text{tracks})}$

- Answers the question: if there should be a hit there, is there one?
- Should be > 99% for unirradiated devices
- Increases with bias voltage
 - ightarrow unirradiated planar devices can be nearly fully efficient at 0V

Radiation and electronics

- Electronics are also sensitive to radiation, but differently so
 - \rightarrow EM damage = the "dose", vs. fluence for the sensors
 - \rightarrow Typically tested through exposure to x-ray and gamma photons
- Single-event upset (SEU) flipped bit
 - → Guard against through "triple modular redundancy" for important registers: majority vote of three replicas

- Damage to transistors affects switching time
 - → shrink transistor size (130 nm → 65 nm)
- Dose rate dependence is a standing concern

ATLAS pixel chip in X-ray irradiations arXiv:2404.10963 [physics.ins-det]

CMS Outer tracker: Si strips

 First hadron collider detector to use all-silicon tracking – unprecedented scale

CMS inner tracker: Si pixels

- "Phase 1" pixel detector installed early 2017
 - → Challenges, but handles the current data rates, + improved performance

Angle detector modules to optimize charge sharing for improved position measurements (nonzero incidence; Lorentz angle)

ERSITY OF

AGO

forward pixel "fans", built at Fermilab

Tracking performance at CMS

Harder to measure curvature of straighter (higher-momentum) tracks

Harder to extrapolate lower-momentum tracks: scattering in material matters

Silicon detectors: ATLAS

ATLAS: the IBL

- "Insertable Barrel Layer" placed between previous innermost layer and beampipe in summer 2014
- Reduced pixel size in Z 400 \rightarrow 250 μ m

ATLAS Simulation Preliminary

\s=8,13 TeV, tt

MV1c Run-1

MV2c20 Run-2

improved b-

tagging

300

350

 $Jet \ p_{_{\rm T}} [GeV]$

400

 \rightarrow First use of 3d pixels in a collider experiment

200

250

150

100

Silicon detectors: LHCb "VELO"

- Upgraded microstrip \rightarrow pixel detector for vertexing in LS2
 - \rightarrow *p-in-n sensors, 55 x 55 µm*² *pitch*

RSITY OF

- Retractable, moved into place for stable beams, encircling the interaction point 5 mm from beam
- micro-channel CO₂ cooling etched into wafers

HL-LHC and beyond

CMS Pixels for the HL-LHC

- Thinner sensors: $300 \rightarrow 150 \ \mu m$
- Shrink the pixels 100 x 150 μ m² \rightarrow 25x100 μ m²
- and build a bigger detector $\rightarrow 3 \rightarrow 12 \text{ pixel disks on each side}$ $\rightarrow \text{Coverage } |\eta| < 2.4 \rightarrow |\eta| < 4.0$

CMS Pixels for the HL-LHC

- Thinner sensors: $300 \rightarrow 150 \ \mu m$
- Shrink the pixels 100 x 150 μ m² \rightarrow 25x100 μ m²
- and build a bigger detector $\rightarrow 3 \rightarrow 12 \text{ pixel disks on each side}$ $\rightarrow \text{Coverage } |\eta| < 2.4 \rightarrow |\eta| < 4.0$

The CMS Phase 2 sensors

- The short direction measures the global phi coordinate, and the long direction measures z (R) in the barrel (endcap).
- Reasons: marginally better impact parameter measurement (compared to $50x50 \ \mu m^2$) and smaller cluster size at the edges of the barrel (data rate considerations)

3d pixel sensors for CMS

- 3D is chosen for the innermost barrel layer for radiation hardness and ٠ critically smaller power dissipation
 - \rightarrow Leakage currents grow with irradiation, and cooling capacity is finite

Figure 5: Schematic view of two adjacent pixel cells, together with the routing from the bump pads, between cells, to the junction columns, near the center of the pixel cells.

Outer tracker \rightarrow L1 track trigger

- Use the bending of tracks in the magnetic field to distinguish between low- and high-p_T tracks
- Closely-spaced sensors allow correlation of hits between layers
 - \rightarrow Design overall tracker geometry to account for track intersection with layers

Si Strip detector of "p_T modules"

Prototypes demonstrate ability to resolve momentum*

ERSITY OF

* No magnetic field at the testbeam so turn the module to simulate the bending

$$p_{\rm T}[{\rm GeV}] \approx \frac{0.57 \cdot R[{\rm m}]}{\sin\beta}$$

CMS Tracker group <u>JINST 18 P04001</u> (2023)

c. mills

OT Built for the track trigger

One quarter of the OT layout with modules colored by sensor separation distance (grey is not used in the trigger)

 \rightarrow smallest separation in the barrel

Numbers give the size of the acceptance window in N(strips)

CMS Phase 2 tracker TDR

VERSITY OF INOIS

CAGO

UIC

 $[\]rightarrow$ smaller values at lower R

Sharper turn-on curves \rightarrow lower thresholds

- Improved trigger performance directly affects physics capabilities
 - \rightarrow Starting from the hardware design

ERSITY OF

ATLAS goes all-in on silicon

Four-dimensional vertexing?

 Focused thus far on three-dimensional reconstruction, but these 200 events per bunch crossing are also distributed in time in an uncorrelated way – but need time resolution in 10s of picoseconds

Sensors for precision timing

- LGAD = Low Gain Avalanche Diode
 - → Charge multiplication --> fast rise time of induced signal --> precision timing

ERSITY OF

Principle: Add to n-on-p Silicon sensor an extra thin p-layer below the junction which increases the E-field so that charge multiplication with **moderate gain** of 10-50 occurs without breakdown.

Timing characteristics depend on both the bulk (i.e. thickness) and the multiplcation layer.

https://indico.cern.ch/event/577879/contributions/2740418/

MIP Timing Detector

Single layer surrounding entire CMS detector

 \rightarrow LGADs for forward detector,

ERSITY OF

AGO

Technological proof-of-concept: performance as needed even after irradiation

ALICE ITS3: CMOS

- Another future path is material reduction: no bump bonding, lowpower electronics, no active cooling (no metal tubes)
- ALICE experiment focuses on nuclear physics, so lower-momentum (< 1 GeV) tracks are important
 - → Multiple scattering dominates momentum resolution at these momenta, motivating aggressive material reduction $0.05\% X_0$ per layer (compare to CMS pixel barrel at ~2.5% X_0 per layer)

ERSITY OF

Silicon works after bending

Beam tests of partial detectors have been successful •

Spatial resolution reasonable for 10 μ m pitch

ERSITY OF

Installation planned for HL-LHC

https://indico.cern.ch/event/1044975/contributions/4663684/

c. mills

What are smartpixels?

- Can be used to infer transverse momentum or regress track angles, given sufficiently granular pixels
- Read out cluster information

 → data reduction at the source (detector) using ML
- Two strategies

ERSITY OF

05

- → Filter: reject tracks with low (< 200 MeV) pT</p>
- → Regression: infer track position and angles

Snapshot: p_T filter

p_T filter with full precision inputs

- Full precision network:
 - 1. Projected cluster size only. Minimal information
 - 2. Projected cluster shape, integrated over 4ns. Selected for implementation
 - 3. Projected cluster shape at 8 200ps time points. 5-10% gain in signal efficiency
- Signal efficiency

25

AGO

ERSITYO

OIS

How much of the $p_T > 2$ GeV sample do we keep?

Background rejection

How much of the $p_T < 2$ GeV sample do we discard?

12/06/2023 Jennet Dickinson I Smart Pixels

mouel	Sig. entrency	DKg. rejection
Model 1	84.8 %	26.6~%
Model 2	93.3~%	25.1~%
Model 3	97.6~%	21.7~%

https://arxiv.org/abs/2310.02474

p_T filter on an ASIC, performance

ADC output	Charge interval $[e^-]$
00	< 400
01	400 - 1600
10	1600 - 2400
11	> 2400

3: Mapping between 2-bit ADC output and collected charge.

- Digitization
 - → Of charge: 2-bit "flash" ADC
 - → Of weights and activation: choose 4-bit weight + 8-bit activation
- Preliminary estimate: 54-75% data reduction
 - → Includes single-pixel hits (noise), loopers, and low-pT tracks rejected by the algorithm
 - → Most rejection comes from "untracked" clusters
 - 55-60% of data, work ongoing to understand these better
 - Based on simulation, hope to look at min-bias and testbeam data in the future

https://arxiv.org/abs/2310.02474

ERSITY OF

AGO

c. mills

Snapshot: parameter regression

Summary and outlook

- Is particle tracking a "solved" problem? No!
- Numerous advances in capabilities in the last 10 years
 - \rightarrow Improved sensor engineering and fabrication
 - Fast precision timing
 - 3d pixels
 - MAPs and ultra-lightweight detectors
 - \rightarrow Pushing computation towards the detector
 - Track trigger
 - Smart pixels

ERSITY OF

AGO

- Don't lose sight of older ideas and technologies, either
 - \rightarrow eg. PID from transition radiation
 - → Old ideas have a way of coming back around, and different collider configurations have different demands (and opportunities)
- Your generation of physicists will launch the next generation of collider detectors

 \rightarrow Keep alive the tradition of innovation combined with attention to detail

Silicon References

- Thanks to Julia Thom for her notes, slides, and resources that got me started with giving this sort of lecture
- Frank Hartmann's summer school lectures (LPC 2014 etc)
- Evolution of Silicon Sensor Technology in Particle Physics, Second Edition (2017), Frank Hartmann, Springer Tracts in Modern Physics
- Detectors in Particle Physics: A Modern Introduction (2024), Georg Viehhauser, Tony Weidberg, CRC Press
 - → pdf avai<u>la</u>ble at <u>https://www.taylorfrancis.com/books/oa-</u> <u>mono/10.1201/9781003287674/detectors-particle-physics-tony-weidberg-georg-viehhauser</u>
- CMS Run1 tracking: <u>https://arxiv.org/pdf/1405.6569.pdf</u> JINST 9 P10009
- CMS Phase 2 tracker TDR: <u>https://cds.cern.ch/record/2272264</u>
- ATLAS ITk pixel TDR; ITk strips TDR

ERSITY OF

AGO

- 3D sensors for IBL: <u>https://doi.org/10.1016/j.nima.2012.07.058</u>
- Moll review on radiation damage, https://doi.org/10.1109/TNS.2018.2819506
- Track trigger review paper: <u>https://doi.org/10.1146/annurev-nucl-020420-093547</u>

Additional References

- PDG reviews
 - → Passage of Particles through Matter <u>https://pdg.lbl.gov/2023/reviews/rpp2023-rev-passage-particles-matter.pdf</u>
 - → Particle Detectors at Accelerators <u>https://pdg.lbl.gov/2023/reviews/rpp2023-rev-particle-</u> <u>detectors-accel.pdf</u>
- Charge deposition (energy loss) in thin materials (Bischsel) <u>https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.60.663</u>
- Shockley-Ramo Theorem: NIM A <u>Volume 463</u>, <u>Issues 1–2</u>, 1 May 2001, Pages 250-267
- TRT performance in Run 1: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/IDET-2015-01/</u>

How we reconstruct particles

Pixel detector modules

Identifying b-quark jets

Identify jets originating from b- quark by long lifetime of B hadrons •

