Quantum Sensing for Fundamental Physics

Roni Harnik, Fermilab Quantum Theory Department and SQMS

HEP - Quantum Interface

Particle physics was always inherently quantum. Duh.

A new field of Quantum physics is rapidly emerging, QIS.

 \Box The interface is growing, but still small -

QIS spans many technologies. Very sensitive (and cool) devices! The goal is to manipulate information in quantum ways.

SC cavities

Ion traps

Atom interferometers

Integrated photonics

 $r = a$

Optomechanical sensors

200 nm

SC qubits

Takeway and Plan

Takeaway: we can bridge the gap b/w these fields

HEP, QIS share a common foundation - Quantum Field Theory. These fields are not as distant as we sometimes think.

We have new opportunities to explore Nature with quantum technology. Plan:

Talk about quantum devices in HEP language. (EFT)

 \square Examples.

Talk about BSM models in a QIS language.

Examples

Examples of searches for BSM with sensors

The Standard model(s): a menu of particles & interactions + an energy budget,

+ a whole lot of mysteries.

The Standard model(s): a menu of particles & interactions + an energy budget,

+ a whole lot of mysteries.

The Standard model(s): a menu of particles & interactions + an energy budget,


```
+ a whole lot of mysteries.
```
The Standard model(s): a menu of particles & interactions + an energy budget,


```
+ a whole lot of mysteries.
```
The Standard model(s): a menu of particles & interactions + an energy budget,

+ a whole lot of mysteries.

The Standard model(s): a menu of particles & interactions + an energy budget,

+ a whole lot of mysteries.

 \Box The Standard model(s): a menu of particles & interactions + an energy budget,

+ a whole lot of mysteries.

There is more. BSM. More fields! We'll get back to that!

The Standard model(s): a menu of particles & interactions + an energy budget,

Particle physics and its mysteries: **Particle physics and its mysic**
B. I. *Charles and Contider ^Rights</sub>* **Farucie physics and its hysteries.**
R. The Charles belo^f description of the state of the state hydrography

 \Box The Standard model(s): a menu of particles & interactions + an energy budget, \Box The Standard model(s): a menu of farticles α interactions + an energy i \Box The Standard model(s): a menu of particles & interactions + an energy budget, \Box The Standard model(s): a menu of particles & interactions + an ene I The Standard model(s): a menu of particles & interactions + a

Every particle is a Field

QFT is continuum of interacting fields. All frequencies. Coerg particle is a rieta
QFT is continuum of interacting fields. All frequencies.

Quantum Field Theory

At the heart of QFT is a mode expansion. We get to pick the modes. Something like -

$$
\phi(x_{\mu}) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2\omega}} \left(a_{\vec{k}} u_{\vec{k}}(\vec{x}) e^{i\omega t} + a_{\vec{k}}^{\dagger} u_{\vec{k}}^{\dagger}(\vec{x}) e^{-i\omega t} \right)
$$

Quantize: a, a^t are operators.
Statify: [a_k, a_k'^t] = \delta_{kk'}

This is sometimes referred to as "second quantization". For HEP its first!

Quantum Fields in Small Devices **S C**uantum Fields in S **GUANTUM FIEIDS IN SMAIL DEVICES** signal pump in the contract of the state of the state

 \Box In this big Universe, fields sometimes get localized to a finite regions. Either "naturally" or in a lab.

$$
\phi(x_\mu) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2\omega}} \left(a_{\vec{k}} u_{\vec{k}}(\vec{x}) e^{i\omega t} + a_{\vec{k}}^\dagger u_{\vec{k}}^{*}(\vec{x}) (e^{-i\omega t}) \right)
$$

Quantum Fields in Small Devices **S C**uantum Fields in S **GUANTUM FIEIDS IN SMAIL DEVICES** signal pump in the contract of the state of the state

 \Box In this big Universe, fields sometimes get localized to a finite regions. Either "naturally" or in a lab.

$$
\phi(x_{\mu}) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2\omega}} \left(a_{\vec{k}} u_{\vec{k}}(\vec{x}) e^{i\omega t} + a_{\vec{k}}^{\dagger} u_{\vec{k}}^{\dagger}(\vec{x}) (e^{-i\omega t}) \right)
$$

Only a discretum satisfies boundary conditions.

$$
+\sum_{j}\frac{1}{\sqrt{2\omega}}\left(a_ju_j(\vec{x})e^{i\omega t}+a_j^\dagger u_j{}^*(\vec{x})(e^{-i\omega t}\right)
$$

Quantum Fields in Small Devices

 \Box Consider the low energy EFT of the discretum. Often in terms of a, at

$$
\phi_j(x_\mu) = \frac{1}{\sqrt{2\omega}} \left(a_j u_j(\vec{x}) e^{i\omega t} + a_j^{\dagger} u_j^{*}(\vec{x}) (e^{-i\omega t}) \right)
$$

 \Box In these EFTs, modes separate from the continuum, Quantum Mechanics shines:

New phases

BTW: interesting quantum effects sometimes happen even without boundary conditions

New phases, gaps, band structures, nontrivial dispersion… :

- Superconductors
- Superfluids
- Semiconductors
- Semi-metals
- \square Spin glasses
- Topological phase
- \Box ...

Of course, these phases are sometimes used to impose boundary conditions, and …

New phases

BTW: interesting quantum effects sometimes happen even without boundary conditions

New phases, gaps, band structures, nontrivial dispersion… :

- Superconductors
- Superfluids
- Semiconductors
- Semi-metals
- Spin glasses
- Topological phase
- …

In these phases, the convenient basis for the QFT mode expansion, the low energy EFT, involves collective excitations. $\phi_j(x_\mu) =$ 1 $\sqrt{2}\omega$ $\left(a_j u_j(\vec{x})e^{i\omega t} + a_j^{\dagger} u_j{}^*(\vec{x})(e^{-i\omega t})\right)$ Apologies for over-simplifying a field that is not mine..

Of course, these phases are sometimes used to impose boundary conditions, and \cdots

Examples

Optical Devices (e.g. integrated optics)

Superconducting circuits and cavities

Optical Devices

Optics is the low energy EFT of light in matter.

- \Box We can control the dispersion relation: $k = n\omega$. Useful for localization.
- A waveguide admits a 1D EFT w/ modes quantized in transverse direction.
- Transverse wave function affects longitudinal dispersion relation (a la KK modes!)

Linear Optics: $H = E^2 + B^2 = \sum \hbar \omega (a^{\dagger} a + \frac{1}{2})$

"Integrated photonics"

Nonlinear Devices $\mathbf{F}_{\mathbf{r}}$ perspective, to further borrow terms from the lexicon of particle physics, and particle physics, and index of refraction appear at the renormalizable level of the EFT and hence are the \mathcal{L}

 \Box Like any EFT, in a quantum device there is a UV cutoff. \Box We can add higher dim operators. For example, in optics the optical EFT. In non-linear optical EFT. In non-linear optics the material induces such higher material induces such higher α and not anti-matter. Parity implies that the (2) interaction can be sizable only in crystals that the α

$$
Dim-6: \tHSPDC = \int_{\text{crystal}} d^3 \vec{x} \left(\chi_{jkl}^{(2)} E_j E_k E_l \right)
$$

$$
Dim-8: \tH4-wave = \int_{\text{crystal}} d^3 \vec{x} \left(\chi_{jkl}^{(3)} E_j E_k E_l E_m \right)
$$

note that Equation (3) violates both charge conjugation (Furry's theorem in particle parameters both charge co

with 3 and the third order susceptibility. As operators or order susceptibility. As operators we mixing mixing mixing mixing mixing mixing \sim

Nonlinear Devices $\mathbf{F}_{\mathbf{r}}$ perspective, to further borrow terms from the lexicon of particle physics, and particle physics, and index of refraction appear at the renormalizable level of the EFT and hence are the \mathcal{L}

jklEjEkElE^m

 \Box Like any EFT, in a quantum device there is a UV cutoff. We can add higher dim operators. For example, in optics the optical EFT. In non-linear optical EFT. In non-linear optics the material induces such higher material induces such higher α \Box We can add higher dim operators. For example, in optics and not anti-matter. Parity implies that the (2) interaction can be sizable only in crystals that the α \Box We can add higher dim operators. For example, in optics are not mirror symmetric. One can go further in the EFT expansion to dimension to dimension to dimension \mathcal{L}_max \blacksquare \Box we can agg nigher gim operators. For example, in optics

argument. Given that the origin of the origin of the higher order terms are the background atoms in the crystal,

$$
Dim-6: \tHSPDC = \int_{\text{crystal}} d^3 \vec{x} \left(\chi_{jkl}^{(2)} E_j E_k E_l \right)
$$

$$
Dim-8: \tH4-wave = \int_{\text{crystal}} d^3 \vec{x} \left(\chi_{jkl}^{(3)} E_j E_k E_l E_m \right)
$$

We can estimate
$$
\chi'
$$
 s in naive dimensional analysis:
\nWhen the field is set to that in an atom, we set (Dim-4 ~ Dim-6 ~ Dim-8):
\n
$$
E_{\text{atom}} \sim e/4\pi a_0^2
$$
\n
$$
\chi^{(2)} \sim \frac{\sqrt{4\pi}}{a^{5/2}m_e^2}
$$
\n(by comparison, in vacuum
\n
$$
\chi^{(3)} = \frac{2a^2}{45m_e^4}
$$

note that Equation (3) violates both charge conjugation (Furry's theorem in particle parameters both charge co

Superconducting Cavities & Circuits

□ Cavities: Light in a box. A discretum of states.

 \Box Separation from the continuum is parametrized by $\mathbb Q$.

 $Q \sim 10^{10}$ is now routine. (Thank you accelerators!)

LC Circuits: quantized current/flux.

 \Box Control frequency with L & C, $(\omega^2=1/LC)$.

Both are harmonic. Equally spaced levels.

 $H_{mode} = \hbar \omega (a^{\dagger} a + \frac{1}{2})$

Nonlinear Devices

Here too, we can arrange for a UV cutoff with higher dim operators,

e.g. making ${\mathsf L}$ a function of a^ta.

 $H = \hbar \omega (a^{\dagger} a + \frac{1}{2}) + \kappa (a^{\dagger} a)^2$

Level spacing is nonuniform.

Generically, κ < ω. ("Νaturalness" :-)

This allows for control of individual levels of a given mode!

Quantum Control

Within the device EFT, we can control the quantum state.

Pluses of light can induce oscillation between states

Occupation number, say, can store information & be read out.

 $Qubit:$ $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$

Quantum Control

Within the device EFT, we can control the quantum state.

Pluses of light can induce oscillation between states

Occupation number, say, can store information & be read out.

 $Qubit:$ $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$

Quantum Control

Within the device EFT, we can control the quantum state.

Pluses of light can induce oscillation between states

Occupation number, say, can store information & be read out.

$$
Qubit: | \psi \rangle = \alpha |0 \rangle + \beta |1 \rangle
$$

Or Qudit: $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle + \gamma|2\rangle \cdots$

By the way …

 $\left($

SQMS

- Superconducting devices are a central player in QIS.
- \Box A limiting factor in their performance is loss (finite \Diamond) & decoherence.

e.g. prepare a qubit, $\alpha|0\rangle + \beta|1\rangle$, after a while $|0\rangle \longrightarrow |1\rangle$ For modern qubits, a while ~ msec

- Fermilab, and other labs, had already developed ultra-high-Q cavities to accelerate particles! Lifetimes of $O(sec)$!
- The SQMS center is using this technology and materials know-how for QIS.
- Achieving record coherence times in 2D and 3D systems, and understanding decoherence effects.

Quantum Simulation

Famously, control of quantum states change the game. Quantum computers! (Shor's algorithm, etc).

 p_0 $\sigma_{0,1}$ e_1 $\sigma_{1,2}$ p_2 $\sigma_{2,3}$ e_3

 $v_{1,2}$ l

where *H* is the Hadamard gate and *m* = *Ns/*2 ≠ 1 is the center lattice site. The superposition of these two states

 $^{(0)}0,1$ $^{(0)}0,1$

 p_0

 \overline{a}

For HEP, quantum computers may tackle open computational challenges:

- Real-time simulation of HEP (e.g. of hadronization) on classical computers converge prohibitively slowly due to rapidly rotating phases (sign problem).
- But, even if quantum computers were fault tolerant today, we are not ready!
- Identifying efficient mappings of a lattice QFT to a QC, and *f*he algorithm for simulation is an active area of research! *|P*(*Ns*)Í are defined for lattices of size *N^s* as ^A *^N*Ÿ²≠² *^Hn,n*+1*Xn*+1^B ¢2*Ns*≠¹ *, |P*(*Ns*)Í =*Xm‡m,m*+1*Xn*+1 *|*(*Ns*)Í*.*

Quantum Simulation

Famously, control of quantum states change the game. Quantum computers! (Shor's algorithm, etc).

For HEP, quantum computers may tackle open computational challenges:

- Real-time simulation of HEP (e.g. of hadronization) on classical computers converge prohibitively slowly due to rapidly rotating phases (sign problem).
- But, even if quantum computers were fault tolerant today, we are not ready!
- Identifying efficient mappings of a lattice QFT to a QC, and *f*he algorithm for simulation is an active area of research! *|P*(*Ns*)Í are defined for lattices of size *N^s* as ^A *^N*Ÿ²≠² *^Hn,n*+1*Xn*+1^B ¢2*Ns*≠¹ *, |P*(*Ns*)Í =*Xm‡m,m*+1*Xn*+1 *|*(*Ns*)Í*.*

But not the focus of my talk. it not the focus of my taik. The

Quantum Sensing

The isolation of modes, and the ability to control them enables feeble effects to lead to dramatic consequences:

Appearance of mode occupation (Haloscope, light shining though wall)

Removal of mode occupation/phase transitions (TES, Nanowires: SC to normal)

 \Box Time evolution of ultra sensitive (entangled?) states

BSM - for Quantum Mechanics

New Physics - New Fields

+ Something new.

Ok. For concreteness,

(and because QIS is often about controlling light)

lets assume the new field couples to photons.

Linear or nonlinear?
Dark Photons - a Linear Extension

 \Box If something mixes linearly with the photon, it must have the same quantum numbers:

The dark Photon effective Hamiltonian:

 $\mathcal{H} \supset \mathcal{H}_{\mathbb{Q}\in\mathbb{D}} + \varepsilon \mathcal{E} \cdot \mathcal{E}' + \mathbb{B} \cdot \mathbb{B}'$

(and dark photon also has a mass, and a longitudinal polarization!)

(OFC, a dark photon, if it exists, would teach us profound lessons! New force of nature. Grand Unification, etc.)

Dark Photons - a Linear Extension

 \Box If something mixes linearly with the photon, it must have the same quantum numbers:

The dark Photon effective Hamiltonian:

 $\mathcal{H} \supset \mathcal{H}_{\mathbb{Q}\in\mathbb{D}} + \varepsilon \mathcal{E} \cdot \mathcal{E}' + \mathbb{B} \cdot \mathbb{B}'$

(and dark photon also has a mass, and a longitudinal polarization!)

(OFC, a dark photon, if it exists, would teach us profound lessons! New force of nature. Grand Unification, etc.)

Dark Photons - a Linear Extension

Axions - A nonlinear extension of QED

A nonlinear interaction, naively, would involve 2 photons & 1 new field.

$$
\mathcal{L} \supset \frac{a}{f} F^{\mu\nu} \tilde{F}_{\mu\nu} = \frac{a}{f} \, \vec{\epsilon} \cdot \vec{B}
$$

Axion phenomenology:

- Axion mixing w/ photons polarized along background B field.
- \Box Axion can be absorbed by photon \rightarrow up conversion.
- Axion exchange -> photon nonlinearity in vacuum. [e.g. Bogorad, Hook, Kahn, Soreq (2020)]

(Of course, the discovery of an axion will be a profound insight! Strong CP. etc.)

[Sikivie]

[PVLAS]

[Berlin et al (2019)] [Gao, RH (2020)]

B

 E MMMg $\cdot \cdot \cdot \cdot \cdot$ a

Pecci and Quinn (77)

Axions - A nonlinear extension of QED

New Particle vs Dark Matter Searches

We can test two distinct hypotheses:

Axion/Dark photons are new fields we can source in a lab.

They also make up the (cold) dark matter of the Universe.

DM search

Frequency is set by DM mass and is unknown. Need to scan!

Examples

Cavities

Optics

Qubits

Atoms

I probably have more example than we have time for…

Dark SRF: cavity-based search for the Dark Photon

Look for linear model with linear devices: A light-shining-through-wall experiment.

30 \sim 30. The measured power spectral density (PSD) of the measured power spectral dens

Dark SRF: cavity-based search for the Dark Photon

Look for linear model with linear devices: A light-shining-through-wall experiment.

Phase 2: in DR, receiver at ~mk, in quantum regime. Improved frequency stability. Photon counting and/or phase sensitive

Increased reach.

30 \sim 30. The measured power spectral density (PSD) of the measured power spectral dens

Axion searches with Cavities

- We can look for nonlinear effects.
	- DM search: Turn on a B field*, or up conversion of pump mode photon into a nearby signal mode. [Sikivie] pump mode photon into a nearby signal mode. [Sikivie]
	- Lab search: look for nonlinearity between modes (e.g. 2 pumps, one signal. [e.g. Bogorad, Hook, Kahn, Soreq (2020)]
- Condensed matter connection: In many cases, the inherent nonlinearity of SC, nonlinear-Meinser.

[J. A. Sauls, Prog. Theor. Exp. Phys. 2022, 033I03 (2022)]

A double cavity setup likely needed. [Gao, RH (2020)]

* Turning one a strong B field in a SC cavity and keeping high Q is an open research challenge.

Can we do better?

Estrada et al. *PRX Quantum* 2 (2021) 3, 030340
RH in prepration. **RH in prepration.**

Nonlinear Optics with Dark States t_1 the correlations between Ω the frequency of the frequency of the signal photon \bm{s}

standard case due to the different dispersion relations of the produced dark state as compared to $\frac{1}{2}$ the rates $\frac{1}{2}$ for the crystal lengths. Presence of idler is inferred. Might as well be invisible! Using the *Represence of identicipal composition* shown in the second the second in the shown in the second se ϵ in expanded by raper is an erred. They as well be any subject

Estrada et al. *PRX Quantum* **2 (2021) 3, 030340 RH in prepration.** $F = (-2, 2)$, $F = 2$

Nonlinear Optics with Dark States r Optics with Dark 150 4 1 N'ANIINA 21 ¹*Fermi National Accelerator Laboratory, PO Box 500, Batavia IL, 60510, USA* ²*Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina*

 $\alpha_{\omega} \equiv \omega_{s}/\omega_{p}$

n^{*i*} determine the differential and total rates of differential rates of differential rates of differential rates of $\frac{1}{2}$ frequency. We consider both the colinear (*◊^s* = 0) and

Chen et al, 2311.10413 Ito et al 2311.11632 Bodas, Ghosh, RH, in prep

Can we get quantum speed-up in DM detection? Consider *n* qubits interacting with DM:

Chen et al, 2311.10413 Ito et al 2311.11632 Bodas, Ghosh, RH, in prep

Can we get quantum speed-up in DM detection? Consider *n* qubits interacting with DM:

Chen et al, 2311.10413 Ito et al 2311.11632 Bodas, Ghosh, RH, in prep

Can we get quantum speed-up in DM detection? Consider *n* qubits interacting with DM:

Chen et al, 2311.10413 Ito et al 2311.11632 Bodas, Ghosh, RH, in prep

Can we get quantum speed-up in DM detection? Consider *n* qubits interacting with DM:

Chen et al, 2311.10413 Ito et al 2311.11632 Bodas, Ghosh, RH, in prep

Can we get quantum speed-up in DM detection? Consider *n* qubits interacting with DM:

Chen et al, 2311.10413 Ito et al 2311.11632 Bodas, Ghosh, RH, in prep

"transfer gate"

"transfer gate

Can we get quantum speed-up in DM detection? Consider *n* qubits interacting with DM:

Chen et al, 2311.10413 Ito et al 2311.11632 Bodas, Ghosh, RH, in prep

Can we get quantum speed-up in DM detection? Consider *n* qubits interacting with DM:

Rate scales as *n*2 !!

A variety of algorithms for sensing (e.g. quantum phase estimation, work in progress).

 \Box Imagine we take a qubit in free space and induce a transition:

We give the atom some energy, but also momentum!

 \Box Imagine we take a qubit in free space and induce a transition:

We give the atom some energy, but also momentum!

 \Box Imagine we take a qubit in free space and induce a transition:

 \Box We give the atom some energy, but also momentum!
Superconducting phase, ϕ

 \Box Imagine we take a qubit in free space and induce a transition:

 \Box We give the atom some energy, but also momentum!
Superconducting phase, ϕ

MAGIS-100 is under construction in Fermila's MINOS shaft. :-)

Summary **Summary** s ummary summary state of the set o

Quantum Field theory extends into today's quantum devices! The interface of HEP and QIS is growing! \Box Quantum Field theory extends into today's quantum devices! Quantum Field theory extends into today's quantum devi
Cincinal pulsar in the set in the contribution of the contribution of the contribution of the contribution of OULLE IN INC.
• Quantum Field theory extends into today's quantum devices! \square Quantum Field theory extends into today's quantum summary
The pullet of the pump of

- Quantum simulation of HEP (exciting, but not today's topic)
- Quantum sensing
- Quantum sensors can probe new hypotheses in HEP

MATERIALS & SYSTEMS CENTER

Deleted Scenes

$$
\Gamma_{\rm SPDC} \sim \frac{P_p \chi_{\rm eff}^{(2)^2}\omega_s\omega_i L}{\pi n_p n_s n_i A_{\rm eff}}
$$

.
tivat sent an interesting challenge. Achieving ten events in Motivates long crystals too.

$$
\text{Rates:} \qquad \Gamma_{\text{SPDC}} \sim \frac{P_p \chi_{\text{eff}}^{(2)} \omega_s \omega_i L}{\pi n_p n_s n_i A_{\text{eff}}} \qquad \text{Motivates long crystals too.}
$$
\n
$$
\Gamma_{\text{dSPDC}}^{(A'_L)} \sim \epsilon^2 \frac{m_{A'}^2}{\omega_{A'}^2} \frac{P_p \chi_{A'_L}^{(2)}^2 \omega_s \omega_{A'} L}{n_p n_s A_{\text{eff}}} \qquad \qquad \Gamma_{\text{dSPDC}}^{(\text{axion})} \sim \frac{P_p g_{a\gamma\gamma}^2 \omega_s L}{\omega_{\text{axion}} n_p n_s A_{\text{eff}}}
$$
\n
$$
N_{\text{events}}^{(A'_L)} \sim 10^{21} \left(\epsilon^2 \frac{m_{A'}^2}{\omega_{A'}^2}\right) \left(\frac{P_p}{\text{Watt}}\right) \left(\frac{L}{\text{m}}\right) \left(\frac{L}{\text{watt}}\right) \left(\frac{L}{\text{m}}\right) \left(\frac{L}{\text{wart}}\right) \left(\frac{L}{\text{wart}}\right) \qquad N_{\text{events}}^{(\text{axion})} \sim 40 \left(\frac{g_{a\gamma}}{10^{-6} \text{ GeV}^{-1}}\right)^2 \left(\frac{P_p}{\text{Watt}}\right) \left(\frac{L}{\text{m}}\right) \left(\frac{t_{\text{int}}}{\text{year}}\right)
$$

Gravity Waves - A nonlinear extension

A gravity wave also interacts w/ two photons

 \mathcal{L} \supset $F^{\mu\nu}F_{\mu\nu}$ ~ $h(B \cdot B + \epsilon \cdot \epsilon) + \cdots$

But often more important:

 $H = \hbar \omega (a^{\dagger} a + \frac{1}{2})$ with ω ~ (1+h)L-1

Axion-like phenomenology:

GW mixing w/ photons in background B field. θ and the electromagnetic modes (orange and blue lines) are shown for an optimal configuration. A scanner configuratio

GW can be absorbed by photon -> up conversion.

Gravitational waves

- **.** Photon up-conversion due to GW.
- **EX Current axion experiments have sensitivity** to GHz Gravity waves [1].
- A dedicated cavity experiment, e.g. MAGO, has significant reach at MHz [2].
- MAGO traveled from INFN to DESY to Fermilab for testing
- **A Fermilab KEK collaboration to design new dedicated broadband cavity.**

the reduced EM noise allows the reduced EM noise and the reduced Broadband detector of high-frequency of high-frequency of high-frequency of high-frequency of high-frequency of \mathbb{R}^n **and** \mathbb{R}^n **and** \mathbb{R}^n **and**

42

Multimode searches *Sinowski, et al., arXiv:2203.12714, 3howmas*

Berlin, et al., JHEP, DOI:10.1007/JHEP07 (2020) 088 Berlin, et al., arXiv:2203.12714, Snowmass WP (2022)

Snowmass name: **SRF-m3** Asher's proposal: *SuperRAD*

Figure 13: A schematic 13: A schematic Upcontacts: A shere is the heritin, Bianca Giacone
Contacts: A shere Berlin, Bianca Giacone Contacts: Asher Berlin, Bianca Giacone

SUPERCONDUCTING $W\in S$ (a)

Dark Matter - Quantum Sensor Network

- **A network of cavities can be used to enhance the sensitivity to dark matter.**
- How should we distribute quantum resources in the network?
- **EX A distributed quantum sensing protocol for DM searches allows for enhanced scan rate for DM.**

A new collaboration of HEP and QIS experts from across SQMS: [1] **PRX Quantum 3 (2022) 3, 030333** [2] 2210.07291 [quant-ph] A new collaboration of HEP ar $\frac{1}{2}$. Later in the paper, we shall also refer to a $\frac{1}{2}$ \overline{a} and \overline{a} setup. A single-mode squeezed vacuum is distributed vacuum is distributed vacuum is dis-A new collaboration of HEP and QIS experts from across SQMS: sive linear networks, *W*⁰ and *W*. The network utilizes clas s correlations between the axion-induced displacements between the axiom-induced displacements \sim **FULL-VOLUME OF READING OF REAL PROPERTY** $[1]$ DDY Quantum 3 (2022) 3 03($\left[\begin{smallmatrix}1&1&1&1\end{smallmatrix}\right]$ is a coherent signal which can be $\left[\begin{smallmatrix}2&0&2\end{smallmatrix}\right]$

44 ⁴⁴ [3] 2210.16180 [quant-ph] (in review by Nature Photonics) σ is the order post-processing of the output signals of the outp ut by Noture Dhetenice) $\mathbf w$ by nature Photonics). The $\mathbf w$ entanglement (1824-18). cal die colored lines represent their entanglement. $\overline{131}$ 2210 16180 louant-phi $\overline{16}$ in revi surement to search for dark matter.

Multimode searches

Bogorad, et al., PRL, DOI:10.1103/PhysRevLett.123.021801 Berlin, et al., JHEP, DOI:10.1007/JHEP07 (2020) 088 **Gao & Harnik, JHEP, DOI:10.1007/JHEP07 (2021) 053 Berlin, et al., arXiv:2203.12714, Snowmass WP (2022) Sauls, PTEP, DOI:10.1093/ptep/ptac034 (2022) Giaccone, et al., arXiv:2207.11346 (2022)**

- **EXIOM** search based on the heterodyne detection scheme: cavity design is finalized, contract for cavity fabrication placed (cavity arrival: Fall 2023)
- **.** In preparation for search:
	- Working on RF experimental set up and read out system
	- Addressing experimental challenges such as passive dampening of vibrations in LHe facility
- **E** Multimode feasibility study

Contacts: Asher Berlin, Bianca Giacone

Ultrahigh Q for Dark Matter

Superconducting Nb₃Sn cavity (FNAL): Posen et al., arxiv:22014.10733, in review in Phys Rev Applied

46

Hybrid copper-dielectric cavity (INFN): Di Vora et al., PhysRevApplied.17.054013

Q ≥ 105-7
Single Particle Qubit

■ The most precise theory-experiment comparison in physics: yet all **het all diverse magical**

Electron magnetic moment (g-2)_e: The quantum state of a single electron in a trap is monitored via a **QND measurement**.

microwave inlet

```
<u>| 100, 07 100 1 | 4</u><br>| mender is al
Phys. Rev. Lett. 130, 071801 (2023)
Editors choice!
```
■ SQMS joined the effort, contributed to understanding loss sources. anding loss sources n induced to understanding foss sources.

 W e also found that a single- W upo a 4.2 K solenoid to provide a very stable *B. (b)* Silver B. (b) Silver B. (b) Silver B. (b) Silver B. (b) S is a sensitive DM search in a constant challenging frequency range! **Example 1 SQMS bonus:** We also found that a singledetermine, we do not recommend averaging our two deelectron qubit is a sensitive DM search in a fits that extract ¯*f^c* and ¯⌫*a*. The two dominant uncertain-

 $-\frac{\mu}{\mu_B}$

 $=\frac{g}{\delta}$ 2

■ Theory + proof-of-concept!

mensions and potentials produce such a potential for a nuclear paramagnetism uncertainty is based upon the *Phys.Rev.Lett.* **129 (2022) 26, 261801** centered electron, which then oscillates nearly harmoni-measured temperature fluctuations of the silver trap elec-**(a new NU-Stanford-Fermilab collaboration) CALLY ALONG THE AXIAL FREQUENCY AND THE AXIAL FREQUENCY AT THE AXIAL FREQUENCY OF A THE AXIAL FREQUENCY** T and T and T and T materials α systems center

Ultrahigh Q for Dark Matter

Cervantes et al., arxiv:2208.03183, in review in Phys. Rev. Lett.

DPDM search with 1.3 GHz cavity with _{QL≈10¹⁰.}

Deepest exclusion to wavelike DPDM by an order of magnitude. **Next steps:**

- Tunable DPDM search from 4-7 GHz. ("low hanging fruit")
- Implement photon counting to subvert SQL noise limit.

