

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Neutrino Physics

Minerba Betancourt, Fermilab 01 August 2024

Is the standard model complete?

- Why is there such large gap between neutrino masses and quark masses?
- Why do quarks and leptons exhibit different behavior?
- What is the absolute mass of neutrino?

Where do neutrinos come from?

- Neutrinos are the most common matter particles in the universe **10**⁻¹ → v_e e⁻ in mb) **10**⁻⁴ **SuperNova 10**⁻⁷ Reactor **10**⁻¹⁰ Cross Section ($\frac{v}{v_{e}}e^{-13}$) 10⁻¹³ Accelerator Terrestrial Cosmic **Atmospheric** Solar **10**⁻²⁵ **Big Bang 10**⁻²⁸ **10**⁻³¹ **10**¹⁰ 10¹² 10⁸ **10**¹⁶ 10² **10**⁴ **10⁶ 10**¹⁴ **10⁻² 10**¹⁸ **10**⁻⁴ 1 Neutrino Energy (eV)
- Reviewing the neutrino interactions relevant to neutrino oscillation at the few GeV region
 Fermilab

Neutrinos Oscillate!

$$\begin{pmatrix} v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} w_{\mu} \\ w_{3\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_{2} \\ v_{3} \end{pmatrix}$$

• There is a non-zero probability of detecting a different neutrino flavor than that produced at the source

$$P(v_{\mu} \to v_{\tau}) = \sin^2(2\theta) \sin^2\left(\frac{1.27\Delta m_{23}^2 L}{E_v}\right)^2 (2\theta) \sin^2\left(\frac{1.27\Delta m_{23}^2 L}{E_v}\right)$$

• The physics parameters are: the mixing angle and one mass squared difference

What do we know?

5

• The probability of a neutrino V_{μ} transforming into a V_{e}

This is the probability that a neutrino that starts as ν_{ϵ} $P(\overset{\text{We can see}}{\nu_{\alpha} \to \nu_{\beta}}) \stackrel{\text{from the probability equation 2(7) if the neut}}{=} \sum_{j}^{j} \overset{\text{We can see}}{\nu_{\beta j} e} \overset{\text{from the probability equation 2(7) if the neut}}{\nu_{\alpha j}} \begin{bmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = U^* \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$

Three neutrino mixing **A**.

where the mixing matrix has 3 mixing angles and one phase

Considering three generations of neutrinos, in the neutrino oscillations formulation with mass eigenstates through the PMNS matrix $P(\nu_{\alpha}^{\text{Writing the equation}}) \cong 2^{\text{Writing the equation}} U_{\alpha i}^{\text{Writing the equation}} = 2^{\text{Writing the equation}} U_{\alpha i}^{\text{Writing the equation}}$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & & s_{13}e^{-i\sigma} \\ & 1 & & \\ & -s_{13}e^{i\delta} & & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ & -s_{12} & c_{12} \\ & & & 1 \end{pmatrix} \begin{vmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}_{\substack{2-s_{13} \\ 2-s_{13} \\ \vdots_{12}-s_{13} \\ \vdots_{12}-s_{13} \\ \vdots_{12}-s_{13} \end{pmatrix}$$

where $c_{jk} = \cos\theta_{jk}$ and $s_{jk} = \sin\theta_{jk}$. The parameter of termination is the expression of the formula in the expression of the e Minerba Betancourt oscillations in vacuum. The complete expression for the probability is

What do we know?

- The probability of a neutrino V_{μ} transforming into a V_{e}

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\sum_{j \nu_{3}}^{\nu_{2}} U_{\beta j}^{2} e^{-i\frac{\Delta m_{j}^{2}L}{2E}} U_{\alpha j}|^{\beta} \qquad \qquad \begin{bmatrix} \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = U^{*} \begin{bmatrix} \nu_{2} \\ \nu_{3} \end{bmatrix}$$

$$\begin{vmatrix} \nu_{e} \\ \psi_{\mu} \\ \nu_{\tau} \\ \nu_{\tau} \end{vmatrix} e_{\mu} e_{\mu}$$

$$\begin{array}{ll}
\nu_{\mu} \to \nu_{\mu} & \nu_{e} \to \nu_{e} \\
\nu_{\mu} \to \nu_{\tau} & \nu_{\mu} \to \nu_{e}
\end{array}$$

atmospheric and long baseline reactor and long baseline

 $\begin{array}{l} \nu_e \to \nu_e \\ \nu_e \to \nu_\mu + \nu_\tau \end{array} = \sin^2 2\theta \sin^2 \theta \sin^$

solar and reactor

 $\begin{bmatrix} \nu_e \end{bmatrix} \quad \downarrow \quad \begin{bmatrix} \nu_1 \end{bmatrix}$

Neutrino Oscillation at Long Baseline

Following presentation by Nunokawa, Parke, Valle, in "CP Violation and Neutrino Oscillations", Prog.Part.Nucl.Phys. 60 (2008) 338-402. arXiv:0710.0554 [hep-ph]

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - 4\cos^{2}\theta_{13}\sin^{2}\theta_{23} \left[1 - \cos^{2}\theta_{13}\sin^{2}\theta_{23}\right]\sin^{2}\Delta_{3i}$$

$$\simeq 1 - \sin^{2}2\theta_{23}\sin^{2}\Delta_{3i}$$

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq |\sqrt{P_{\text{atm}}}e^{-i(\Delta_{32}+\delta)} + \sqrt{P_{\text{sol}}}|^{2}$$

$$= P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}P_{\text{sol}}} \left(\cos\Delta_{32}\cos\delta\mp\sin\Delta_{32}\sin\delta\right)$$

$$\sqrt{P_{\text{atm}}} = \sin \theta_{23} \sin 2\theta_{13} \frac{\sin (\Delta_{31} \mp aL)}{\Delta_{31} \mp aL} \Delta_{31}$$

$$a = G_F N_e / \sqrt{2} \simeq \frac{1}{3500 \text{ km}}$$

$$aL = 0.08 \text{ for } L = 295 \text{ km}$$

$$aL = 0.23 \text{ for } L = 810 \text{ km}$$

$$aL = 0.37 \text{ for } L = 1300 \text{ km}$$

Parameter	Channels	Question	
$\sin^2 2\theta_{23}:$	$ u_{\mu} \rightarrow \nu_{\mu} \text{ and } \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}:$	Is θ_{23} maximal?	
$\sin^2\theta_{23}\sin^22\theta_{13}:$	$\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$:	Octant of θ_{23}	
$\mathrm{sign}\left[\Delta_{31} ight]$:	$\nu_{\mu} \rightarrow \nu_{e} \text{ vs. } \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} :$	Neutrino mass hierarchy	
$\delta_{ ext{CP}}:$	$\nu_{\mu} \rightarrow \nu_{e} \text{ vs. } \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}:$	Is CP violated?	

Mark Messier, Neutrino 2023 summer school

7 Fermilab

The Atmospheric Neutrino Anomaly

- Cosmic rays hit the earth isotropically
- People expected:

 $\frac{\Phi_{\nu_{\mu}}(Up)}{\Phi_{\nu_{\mu}}(Down)} = 1$

 However, Super-Kamiokande found

 $\frac{\Phi_{\nu_{\mu}}(Up)}{\Phi_{\nu_{\mu}}(Down)} = 0.54 \pm 0.04$

primary cosmic ray

 π^0

 π^+

μ

air molecule

Field moves quickly

- Around 2003 neutrino physicists searched for the parameter $sin^2\theta_{13}$
- The parameter sin²θ₁₃ has now been measured
- In 2012 Daya Bay measured $sin^2 \theta_{13}$ for the first time
- Today is best known angle!

$$React. \rightarrow \sin^2 \theta_{13}(4.7\%)$$

 $2^{\circ} < \theta_{13} < 9.0^{\circ}$

8 Bemaling Q. Oestions

- Is there CP violation in the Jepton sector?
 - May explain matter-antimatter asymmetry
- What is the mass hierarchy? (sign of $\Delta m_{23}^2 = (2.510 \pm 0.027) \times 10^{-3} \text{ eV}^2 (\pm 1.1\%)$ $\Delta m_{23}^2 = (2.510 \pm 0.027) \times 10^{-3} \text{ eV}^2 (\pm 1.1\%)$ - $\Delta m_{23}^2 = (2.510 \pm 0.027) \times 10^{-3} \text{ eV}^2 (\pm 1.1\%)$ $\Delta m_{23}^2 = (2.510 \pm 0.027) \times 10^{-3} \text{ eV}^2 (\pm 1.1\%)$ Sign of are therefore we antiparticle or not

How to make a neutrino beam

Neutrinos From Accelerators

• A beam of protons interact with a target and produce pions and kaons

- Focusing system (2 horns, with current, emitting B field)
- Decay region (large pipe, filled with helium)
- Monitors and absorbers
- Neutrino beam produces mainly v_{μ} and small component of v_{e}

Neutrino Energy Spectrum

- The target and second magnetic horn can be moved relative to the first horn to produce different energy spectra
- This allows a study of neutrino interaction physics across a broad neutrino energy range
- Neutrino oscillation experiments use interactions in the near and far detectors to study oscillation physics

Neutrinos from Booster

Neutrino Oscillation Program at Fermilab

Long-baseline Experiments: What can we learn?

- Use a high intensity beam of neutrinos from Fermilab
- Construct detectors at far locations: MINOS+ at 735 km (ended data-taking), NOvA at 810 km (taking data) and DUNE at 1300 km (in design)

$$P[\nu_{\mu} \rightarrow \nu_{e}] \neq P[\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}] ?$$

Short-baseline Experiments

10

10⁻⁵

10⁻⁶

10-7

10⁻⁶

10⁻⁹

10⁻¹⁰,

#v [m⁻²GeV⁻¹POT ⁻¹]

- Three argon Time Projection Chambers (TPC) detectors at different baselines from Booster neutrino beam searching for sterile neutrino oscillations
 - Measuring both appearance and disappearance channels

The require detector [25] consisted of an active targe of 44 drift chambers with a total fiducial mass of 2.7 tons, located in a 0.4 Tesla dipole magnetic field as shown in Fig. 1. The $X \times Y \times Z$ total volume of the drift chambers

All Accelerator-Baseo Dritt chamber 300 × 300 × 400 cm³.

teractions and of tracking medium. The average densi • We are using heavy targets for those provided an overall efficiency for charged track

Front View

of neutrino interactions

3.1 Reconstruction

detector

- Using heavy targets involves involves construction of better than 95% and a momentum resonance and a product of the star of
- We need to model nuclear effects a bright range of the assignment

tracks to vertices), to reconstruct the vertex position a the track parameters at each vertex and, finally, to ide tify the vertex type (primary, secondary, etc.). A tran tion radiation detector (TRD) [38,39] placed at the e

particle identificatio lanes [40] were used NOMAD active targ rimeter [41, provided an electromag ie total ene an iron ab ter the elect

> % for mome Ainerba Betancourt | The MINERVA

lentification

 $\dot{\mu}_{\mu}$ and less than 1% am composition can

SBND

TRACK -

Nuclear Inst. and Methods in Physics Research, A, Volume ton reconstructed. nowever, when we study protons emitted the reconstonctionrefficience

> intr $_{
> m llts}^{
> m comp}$ real two Ε PD2Y 4 chiev ted ector. This ap eters for desc

upsteam drift chamber was used as an addi-5 m) remove through-going muons from neutrino interactions upstream of the NOMAD active target. This is crucial for the study of single track events.

🗲 Fermilab

ormance of the MINERvA detector n Physics Research, A, Volume 743, 11 April 2014, Pages 130-159

30 tons

3 different rotated plane views to

resolve high multiplicity events

t/Moriond QCD 2014

Carbon

nt _{MiniBooNE}

Side HC/

Tracke

rounded by (

¹ the NOMAD active target is nearly isoscalar $(n_n : n_p =$ 47.56% : 52.43%) and consists mainly of Carbon; a detailed description of the drift chamber composition can be found in [37]

rent QEL analysis. The much work brack in segun general easily

reconstructed. However, when we study protons emitted

in the ν_{μ} QEL two-track candidates we deal with protons

QEL

A detailed information about the cons mance of the NOMAD drift chambers

developed reconstruction algorithms

Let us briefly describe some features the

Design, calibration, and performance of the MINERvA dete

ooNE

Active Track

3 di resc

The MINERvA Experiment Fine-grained scintillator tracker surrounded by calori Liquid Argon

5

In More Detail

- Oscillation probability depends on neutrino energy E_v
- We need to reconstruct the neutrino energy precisely

$$P(\nu_{\alpha} \to \nu_{\beta}) \approx 1 - \sin^2 2\theta \sin^2(\frac{\Delta m^2 L}{E_{\nu}})$$

- Neutrino energy reconstruction is obtained using the final state particles of neutrino-nucleus interaction
 - Fully active experiments reconstruct the energy using: $E_v = E_{lepton} + hadron$

 Nuclear effects modify the kinematics of the particles and the reconstruction of the neutrino energy

Example of Nuclear Effects (Final State Interaction)

• Final state interaction (FSI):

20

- Due to final state interactions, particles can interact with nucleons and pions can be absorbed before exiting the nucleus and other nucleons get knocked out

Example of Nuclear Effects (multi-nucleon interaction)

• Nuclear effects modify the neutrino energy, for example multi-nucleon interactions

nucleons

- The resulting di-nucleon pair undergo final state interaction and produce low energy proton and neutrons which we do not detect well
- Multi-nucleon processes smear the reconstructed neutrino energy
- The nuclear effects are big (>20%)

Example of Nuclear Effects (Final State Interactions)

ner examples of final state interactions:

Studying Nuclear Effects in MINERvA

- Fine-grained scintillator tracker surrounded by calorimeters
- MINERvA has different nuclear targets iron, lead, carbon, helium, and water

Design, calibration, and performance of the MINERvA detector Nuclear Inst. and Methods in Physics Research, A, Volume 743, 11 April 2014, Pages 130-159

Cross Section Measurements

• Cross section is extracted using:

Background Constraint Procedure for Non-CCQE like

- Using the unattached visible energy for the events passing the proton pID for two different bins of Q² in the tracker
- Using the background dominated region in the unattached visible energy distribution
- Let the background float in the fit while keeping the signal constant until the total matches the data distributions

Comparing with Generators (GENIE vs NuWro)

Data prefers the simulation with final state interactions

🚰 Fermilab

• The A dependence in NuWro seems to be more favored by the data

MINERvA Results

Addressing these Remaining Questions

- Is there CP violation in the lepton sector
- What is the mass hierarchy? (sign of Δm_{32}^2)

 $P[\nu_{\mu} \rightarrow \nu_{e}] \neq P[\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}]$?

- Use simulations to extrapolate from near detector to far detector $\sigma_{v\mu}$ > σ_{ve}
- We definitely need a nuclear model to convert from produced to detected energy spectra and topologies in the near and the far detectors
- This illustrates the significance of precise knowledge of neutrino interactions physics needed for oscillation studies

Where is the Far and Near Detector?

Neutrinos make the journey from Fermilab to northern Minnesota

Illinois Wisconsin Minnesota

Minerba Betancourt

A Neutrino Interaction from the NOvA Experiment

Neutrino Oscillations at Long Baseline

Phys.Rev.Lett. 106 (2011) 181801

NOvA Experiment

33 Minerba Betancourt

Erika Catano, Fermilab JETP, June 2024

Δm^{2}_{32} is now the most precisely known PMNS parameter

Δm_{32}^2 is now the most precisely known PMNS parameter. NOvA's new result achieves a precision of 1.5%

Erika Catano, Fermilab JETP, June 2024

Next Long-baseline neutrino experiment

- Long-baseline neutrino oscillations, including discovery sensitivity to CP violation and neutrino mass ordering
- MeV-scale neutrino physics, including supernova burst astrophysics and solar neutrinos
- Broad program of physics searches beyond the Standard Model

Neutrino Beam and Underground Facilities

- Most intense neutrino beam in the word will provide up to 1.3 MW intensity, designed to allow for future upgrade to 2.4 MW
- Deep underground cavern at SURF to accommodate four 17-kiloton argon Far Detector modules and underground near site

Near Detector at Fermilab

- Near Detector Complex houses a set of detectors to predict the far detector spectrum and monitor the beam stability
- A liquid argon TPC (ND-LAr) plus a Muon Spectrometer (TMS), these can move off -axis (PRISM system)
- An on-axis detector (SAND)

Two LArTPC designs for Far Detector

- First detector to be installed in NE cavern has horizontal drift technology like ICARUS
- Second detector will go into SE cavern and has vertical drift technology

Far and Near Detector Prototyping

- Large-scale DUNE prototypes operated at CERN Neutrino Platform with low noise, stable high voltage and high purity
- Stable operation of ProtoDUNE shows that the technology will work and is scalable to full DUNE
- Several publications from the successful operation between 2018 and 2020 DUNE prototype in CERN

 Near Detector LAr 2x2 prototype Module-1 operated successfully at Bern, preparation for neutrino beam test at Fermilab underway
 Fermilab

	GALLEX/SAGE anomaly	Source – e capture	v _e disappearance	2.8 s
	Reactors anomaly	b decay	v ⁻ e disappearance	3.0 s
 Is there a fc Four anomalies experiments at These anomalie 	• Each possibly explained by sterile neutrino states dri at $\Delta m^{2}_{new} \approx 1 \text{ eV}^{2}$ and sr	y non standard ving oscillations nall sin²(2θ _{new})	Ve Vu	ν, ?
and non-weakly Experime LSND anomaly	2 Minerba Betancourt		electron muon neutrino neutrino	Teutrino
MiniBooNE anor	naly SBL accelerato	r $v_{\mu} \rightarrow v_{e}$ $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$	4.5 2.8	σ σ
GALLEX/SAGE	Source – e	v _e disappeara	ance 2.8	σ
Reactors anoma	ly β decay	ve disappeara	ance 3.0	σ
 Each possibly exstates driving os sin²(2θ_{new}) Is there any addineutrino oscillat 	plained by non standar cillations at $\Delta m^2_{new} \approx 1$ tional physics beyond t ion?	d sterile neutrino eV ² and small he 3- flavor mixin	$(m_4)^2 \qquad \qquad$	\mathbf{v}_{4} \mathbf{v}_{4} \mathbf{v}_{4} \mathbf{v}_{4} \mathbf{v}_{3} \mathbf{v}_{3} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{4} \mathbf{v}_{2} \mathbf{v}_{4} \mathbf{v}_{2} \mathbf{v}_{4} \mathbf{v}_{5} \mathbf{v}_{6} \mathbf{v}_{7} \mathbf{v}_{8}
				Fermilab

Sterile Neutrino Physics

 $2\theta_{\mu}$ Sterile neutrino scenario is far from understood:

- No evidence in V_{μ} disappearance experiments (IceCube, NOvA, MINOS/MINOS+)
- No precise indication from recent \overline{v} flux measurement at reactors
- Planck data/Big Bang cosmology: at most one further flavor with mnew<0.24 eV
 Fermilab

Short Baseline Program (SBN)

- Three LArTPC detectors at different baselines from Booster neutrino beam searching for sterile neutrino oscillations
 - Measuring both appearance and disappearance channels
- Measure neutrino cross sections on liquid argon
- Same detector technology and neutrino beamline: reducing systematic uncertainties to the % level
 - A detection technique providing an excellent neutrino identification to reduce the backgrounds

Liquid Argon TPC Detection Technique

- Tracking device: precise 3D event topology with ~mm³ resolution for ionizing particle
- Scintillation light detected by PMTs to provide event time and trigger
- Charged particles from neutrino interactions ionize the LAr, production ionization electrons drifting in 1 ms toward readout sense wires

- Powerful particle identification by dE/dx vs range
- Remarkable e/γ separation: calorimetric capabilities can distinguish e from γ at the shower start

First Low-Energy Excess Search with MicroBooNE

 No evidence for an enhanced rate of single photons from NC Δ->Nγ decay above nominal MC predictions

- Observe V_e candidate events in agreement, or below, the predicted rates
- Reject the hypothesis that V_e CC interactions are fully responsible for the MiniBooNE excess at > 97% C. L. in all analyses

https://arxiv.org/abs/2110.14054

🚰 Fermilab

First Low-Energy Excess Search with MicroBooNE

• The MicroBooNE experiment presented the results of the first analyses searching for an excess of low-energy electromagnetic events

• No hints of an electromagnetic events excess, but results do not rule out existence of sterile neutrinos

😤 Fermilab

Sensitivity of SBN program

- Searches for both v_e disappearance and v_{μ} appearance

v_e appearance

v_{μ} disappearance

• SBN cover much of the parameters allowed by past anomalies at $>5\sigma$ significance

ICARUS (Imaging Cosmic And Rare Underground Signals)

- Liquid Argon technology for V physics was proposed in 1977 by C. Rubbia
- Many years of R&D at INFN/CERN culminated in first large-scale experiment at LNGS underground labs
- 2 TPCs per module with central cathode, 1.5 m drift, $E_D=0.5$ kV/cm, $\Delta t \sim 1$ ms
- 3 readout wire planes (2 induction+collection) per TPC, ~54000 wires at 0, 60 degrees, 3 mm
 pitch: a continuous read-out
- 360 (8" PMTs)

ICARUS at **FNAL**

 Several technology improvements were introduced, aiming to further improve the achieved performance ICARLIS previous runs: new cold vessels, improvement of the cathode planarity, higher system

Top - horizontal

PM

ICARUS began commissi

TPC

Field cage

Wire planes (anode)

200 –

PMTs

-1000

rino data in June 2021

side CRT

Top CRT

600 500

400 300 200

z [cm]

1 T600 module

Cathode

© 2016-2018 CERN

Neutrino Oscillation Analysis

ICARUS is pursing single-detector neutrino oscillation measurement

CC 0 π Event Selection for fully contained Events

- First cross section measurement: $I\mu$ +Nproton+ 0π
- Observables δP_T and $\delta \alpha_T$, sensitive to initial and final state effects
- Events with contained muons and protons
- Main background is events with pions

 $\delta \vec{p}_{\rm T} \equiv \vec{p}_{\rm T}^{\ell'} + \vec{p}_{\rm T}^{\rm N'}$

 $\delta \alpha_{\rm T} \equiv \arccos$

BSM Searches with NuMI

 Certain BSM searches benefit from sitting off-axis such as kaon coupled Higgs portal scalars

h involving kaon decay and contained dimuon final vy QCD Axion

ropology. events with two muons, search: look for resonance t specific value

SBND Experiment

- The SBND detector contains three systems, a TPC system, a photon detector system (PDS) with 120 PMTs and 192 X-Arapucas and a Cosmic Ray Tagger (CRT)
- SBND is located on the surface

SBND Detector Installation

Neutrino Interactions at SBND

• New data sets will reach the order of millions of neutrino interactions for single channels

BSM Searches with Booster

• Rich BSM searches: Neutrino tridents, dark matter, Higgs portal, heavy neutral lepton, millicharged particles...

🛯 🛟 Fermilab

Detector Commissioning

- Starting to commission the different systems TPC, PMT and CRT
 - 1.6 μ wide per reflecting the duration of the BNB spill

First neutrino interactions

Summary

- Neutrinos are great probes to answer fundamental questions about the nature of matter and the evolution of the universe
- Several discoveries since the first experimental evidence of neutrinos
- Fermilab has excellent program looking to answer the remaining questions in neutrino oscillations
- Long baseline program: measuring the three mixing angles, mass hierarchy and searching for CP violation
 - DUNE is making excellent progress with the detector prototypes and design
- The SBN detectors will perform a world-leading search for eV-scale sterile neutrino by looking at both appearance and disappearance channels
 - Rich physics program of neutrino-argon scattering measurements and BSM physics
 - SBND completed the construction of the detector and starting the commissioning
 - ICARUS is collecting physics quality data with Fermilab neutrino beams and making the first measurements

Neutrino Interactions from NuMI off axis at ICARUS

• Excellent statistics to make cross section measurements for quasi-elastic and pion production scattering, for both electron and muon neutrinos

Expected event rates for I year

Muon neutrino	CCQE	CCMEC	CCRES	CCDIS
6E20 POT	186400	40262	142780	77060
Electron neutrino	CCQE	CCMEC	CCRES	CCDIS
6E20 POT	8256	2000	7905	3678

SBND Detector

