

HEAVY ION COLLISIONS

QGP tomography: Jets and other Hard probes

Inspired by presentations by Helen Caines, Yen-Jie Lee, Yi Chen

DIRECT PROBES OF QGP

• Soft sector measurements allow to infer many important conclusions about QGP properties, but are always impacted by the entire evolution of the system.

TOMOGRAPHIC PROBES FOR QGP

- Idea use *calibrated* external probes to study medium properties X-ray source
- For HIN collisions \rightarrow use self-generated (in)medium probes \rightarrow hard probes!
- "Hard" == large scale \rightarrow theory: suitable for perturbative QCD calculations high momentum transfer Q² high transverse momentum p_T high mass m

WHY USE JETS FOR QGP STUDIES?

• What are Jets?

In theory: fragmented hard-scattered partons \rightarrow collimated spray of hadrons produced by energetic q or g

• Why Jets?

Jets are produced in the earliest phase of the collision

• Factorization of jet/particle production: yields described by convolution of

 $f_a^i(x_i, Q^2)$ $f_b^j(x_j, Q^2) \stackrel{\otimes}{\sigma}(ij \rightarrow kl) \otimes D_k^h(z', p_T^2)$ $PDF \otimes NLO \otimes FF$

• Jets are *calibrated* probes

JET PRODUCTION CROSS-SECTION

• Jets are well-calibrated probes: inclusive jet cross-sections described by NLO calculations over orders of magnitude in p_T and \sqrt{s}

N

JETS AND PARTICLE PRODUCTION

To get particle yields from jets: need to fold in fragmentation functions

 $\frac{d\sigma^{h(k)}}{dp_T^{h\,2}dy^h dz'} = \frac{d\sigma^{jet(k)}}{dp_T^2 dy} \frac{1}{z'^2} D_k^h(z', p_T^2)$ hadrons $\int_k^h(z', p_T^2) - fragmentation functions,$ assumed universal, extracted from e^+e^- annihilation (PETRA, LEP)
and hadronic collisions (UA1,...) $D_k^h(z', p_T^2) - fragmentation functions,$ $D_$

Non-perturbative; limitations at low- p_T and for PID

C G

QGP PROPERTIES VIA JETS/HARD PROBES

- Jet Tomography: What happens if partons traverse a high energy density colored medium?
- Production of jets is unmodified^{*} short-distance process $(\hat{\sigma}(ij \rightarrow kl) \text{unchanged})$
 - Jets are calibrated probes well-understood (and measured!) in pp
 - Jets studies allow to observe medium evolution and equilibration and explore medium properties at different scales

*except for nPDF effects

JET QUENCHING 101: JETS ARE QUENCHED!

JET QUENCHING, THEORY

- "Jet quenching," generally, is a collective term describing the range of phenomena arising from the interaction of hard probes with the QGP medium.
- One of the main features associated with jet quenching is partonic energy loss
- Interactions between hard-scattered parton and QGP: elastic scattering \rightarrow collisional energy loss (essential at lower p_T)
 - mass-dependent

gluon bremsstrahlung \rightarrow radiative energy loss (dominates at high p_T)

- depends on color-charge $\Delta E \sim \alpha_s C_R \hat{q} L^2$, C_R Casimir factor
- dead-cone effect: radiation probability is suppressed for $\theta < \frac{m_Q}{E_Q}$

 $\begin{array}{ll} & \text{low } p_{T} & \text{high } p_{T} \\ \text{Meaning:} & \Delta E_{g} > \Delta E_{q} > \Delta E_{Q} & \Delta E_{g} > \Delta E_{q} \sim \Delta E_{Q} \end{array}$

JET STUDIES, EXPERIMENTALLY

Jets in e^+e^- collision

Jets in AA collisions

Choice of tools (in hard regime):

Spectra/Production rates

Dihadron correlations

Jets/Dijets

Pros: straightforward

Cons: least differential

versatile

multiple BG sources, no direct E measure Eparton

ambiguous, fluctuations

JET QUENCHING: START OF THE ERA

- Comparing particle production rates at high p_T provides (indirect) information on the fate of the jets in QGP
- Nuclear Modification Factor R_{AA} the first tool for jet quenching studies:

 $R_{AA}(p_T) = \frac{d^2 N^{AA}/dp_T d\eta}{\langle N_{bin} \rangle d^2 N^{pp}/dp_T d\eta}$

• Number of binary collisions $< N_{bin} >$ is extracted from Glauber model calculations

JET QUENCHING: START OF THE ERA

- Comparing particle production rates at high p_T provides (indirect) information on the fate of the jets in QGP
- Nuclear Modification Factor R_{AA} the first tool for jet quenching studies:

 $R_{AA}(p_T) = \frac{d^2 N^{AA}/dp_T d\eta}{\langle N_{bin} \rangle d^2 N^{pp}/dp_T d\eta}$

• sQGP - strongly coupled plasma!

Large energy loss for colored probes

How reliable are the Glauber model calculations?

BINARY SCALING AND R_{AA}

• HIN experiments used colorless probes to check N_{bin} scaling:

Isolated photons

$$Z \to \mu + \mu - W \to \mu \nu$$

• N_{bin} is well-modeled and N_{bin}-scaling for hard processes is confirmed experimentally

O L

G

 \geq

Ţ,

V D O K I M O V

(U I C

13

UGUS

 \sim

FLAVOR DEPENDANCE OF QUENCHING

• Recall theory input: radiative energy loss collisional р_т, contributions relevant at lower momenta

FLAVOR DEPENDANCE, TAKE TWO

- At high p_T nuclear modification goes hand in hand with azimuthal anisotropy – two different ways to measure/characterize pathlength dependance of partonic energy loss
- LHC experiments : significant v_2 for both charm and beauty in PbPb events, different p_T dependence
- Charm: $v_2 \sim$ below light hadron v_2
- Beauty $v_2 < \text{charm } v_2$, but sizable
 - \rightarrow indicate strong coupling to the medium
- What about p_T dependence?
 - → need to disentangle energy loss, hadronization, flow, CNM...

OLGA EVDOKIMOV (UIC

16

FLAVOR DEPENDANCE, THEORY INPUT

- Partonic energy loss is manifested in R_{AA} and v_2 at high p_T ; simultaneous description of both measurements is a test for quenching models
- Simultaneous description of charm R_{AA} and v_2 is challenging for the models.
- Models that seem to do best include both collisional and radiative energy loss and nPDF effects (shadowing).

PROOF OF JET-MEDIUM INTERACTIONS

Signature two-particle correlation result:

- Evidence of quenching: disappearance of the away side jet in central AuAu collisions: evidence for strongly interacting medium
- Evidence of non-quenching: effect vanishes in peripheral/dAu collisions

PROOF OF JET-MEDIUM INTERACTIONS

Signature two-particle correlation result:

- Evidence of quenching: disappearance of the away side jet in central AuAu collisions: evidence for strongly interacting medium
- Evidence of non-quenching: effect vanishes in peripheral/dAu collisions

С

Signature two-particle correlation result:

- Evidence of quenching: disappearance of the away side jet in central AuAu collisions: evidence for strongly interacting medium
- Evidence of **non**-quenching: effect vanishes in peripheral/dAu collisions

 \mathbb{N}

PROOF OF JET-MEDIUM INTERACTIONS

Signature two-particle correlation result:

- Evidence of quenching: disappearance of the away side jet in central AuAu collisions: evidence for strongly interacting medium
- Evidence of **non**-quenching: effect vanishes in peripheral/dAu collisions

DISCLAIMER ON THE "DISAPPEARANCE"

• Disappearance of the away side jet in central AuAu collisions at RHIC:

Evidence for strongly interacting medium Effect vanishes in peripheral/dAu collisions

"Disappearance" is accidental!

Two high- p_T hadrons (or high & low p_T combination): reappearance of the away-side jet.

Redistribution is a better way to think about this: energy gets shifted from higher to lower momenta

AUGUST

LET'S GET US SOME JETS!

- In Theory: jets are proxies for hard-scattered partons
- In Experiment: "Jet is what your jet-finder gives you" (P.J.)
- Jet is defined by the reconstruction algorithm:
 - 1) What particles belong to a jet
 - 2) How particle momenta combined into jet p_T

Particularly difficult for AA data due to UE background: R choice dilemma

 \sim

202

22

С

L G

 \geq

Ш

VDOKIMOV (UIC)

~

23

SEQUENTIAL RECOMBINATION ALGORITHMS

• Sequential recombination methods are based on distance measure:

$$d_{ij} = \min(p_{T,i}^n, p_{T,j}^n) \frac{\Delta R^2}{R^2}$$
 and $d_{iB} = p_{T,i}^n$

• Most commonly used:

k _T algorithm	n = 2	PLB641(2006)57
anti- k_T algorithm	n = −2	JHEP 0804 (2008) 063
Cambridge-Aachen algorithm	n = 0	JHEP 9708 (1997) 001

• Do iteratively:

compute all distances d_{ij} and d_{iB} , find the smallest If smallest is a d_{ij} , combine (sum four momenta) for i and jIf smallest is a d_{iB} , call i a jet (remove). Stop then no objects left.

 All three algorithms (+SISCone) are available in the Fastjet package: <u>http://fastjet.fr/</u>

DEALING WITH (HIN) BACKGROUND

The background in HIN events is anisotropic and fluctuating \rightarrow simple "flat-line" subtraction won't work. Need:

1) Modulated BG (shape!)

2) Corrections/unfolding for fluctuations (or reference smearing)

Two general strategies:

"Cluster then Subtract"

Area Subtraction $p_T^{(corr)} = p_T^{(reco)} - \rho A_j$ ρ – average p_T density for BG w/o jets Aj – jet area from "ghost" counts

SD

 \sim

 \sim

02

QUENCHING EFFECTS IN JETS

• Details of the energy loss : jet R_{AA} maps quenching effects in PbPb from 30GeV to 1TeV

• Search for color-charge, mass, and/or flavor effects in energy loss:

Photon-tagged jets (higher fraction of q-jets): less suppressed compared to inclusive jets
b-jets (muon tagger): less suppressed compared to inclusive jets
D⁰-tagged jets – indications of smaller suppression compared to inclusive jets

AUG

QUENCHING BECOMES VISIBLE IN DIJETS

- Di-jets in PbPb: back-to-back, but fraction of imbalanced dijets grows with collision centrality (no modifications in pPb collisions)
- Momentum balance is preserved over the entire event; "missing" p_T in hard sector is balanced by soft hadrons away from jet-axis

UG

C S

 \sim

 \sim

QUENCHING EFFECTS IN JETS

 Both side of dijet are quenched → dijet collection is surface-biased → Use colorless probes to reduce/change geometry bias

• Details of the energy loss:

Dijet, γ -jet, Z-jet – energy balance is disturbed by QGP (Centrality-dependent) changes in $x_{I\gamma}$, x_{IZ} momentum balance

JET LONGITUDINAL STRUCTURE

• Jet fragmentation function: fractional momentum distribution within the jets

Excess of soft fragments/depletion at intermediate momenta Excess of high-p_T tracks – evidence of color-charge effects?

FRAGMENTATION FOR γ +JETS

• Quark-rich g-jet sample allows tests for color-charge effects

Enhancement of particles carrying small momentum fraction Depletion of mid/high momentum particles

JET INNER WORKINGS: SHAPES

- Jet shapes: measure transverse structure of jet momenta
- Fractional transverse energy distribution: $\rho(r) = \frac{1}{N_j} \frac{1}{\delta r} \sum_{jets} \frac{\sum_{trk \in [r_a, r_b)} p_T^{trk}}{\sum_{trk \in [o, R)} p_T^{trk}}$

- Jet Shapes: PbPb to pp ratio @ 2.76 TeV :
 - Little/no medium effects in peripheral events
 - Enhancement at low p_T / larger r in central collisions

```
JET SHAPES: QUARK VS. GLUON
```

• Jet Shapes: quark vs. gluon effects are explored via comparison of inclusive jets and gamma-tagged jets

Similar jet shape modification trends with inclusive jets in central PbPb data: energy shift towards larger radii

What about the magnitudes? Can't compare ratios directly; must mind the reference!

JET SHAPES, FULL FLOW

• Can now measurement of jet shapes up to large radial distances

(Compare to previous measurement in light blue)

JET-MEDIUM INTERACTIONS

• A note on importance of interfacing multiple measurements with theory:

Jet R_{AA} : inclusion of the jet-induced medium flow decreases suppression, but effect is small for small cone sizes and large cone sizes are challenging for HIN

Jet shapes: soft shower thermalization – more collimated hard core; mediuminduced radiation – broader jet shape; inclusion of the jet-induced medium flow critical at large r

JET MASS MEASUREMENTS

• Jet mass distributions:

Jet mass from charged tracks

Jet mass from calorimeter energy

No significant modifications are observed

Large increases in jet mass predicted by quenching models are excluded by the data

Ά

CHANGING TOPIC: ANOTHER HARD PROBE

OR: one more time about QGP temperature

C

QUARKONIA MELTING

- Heavy quarks (c, b) are produced in a large-Q² processes at the initial stage of the collision due to their large masses: $m_c \sim 1.3 \text{ GeV}/c^2$, $m_b \sim 4.2 \text{ GeV}/c^2$ (negligible in-QGP production even at LHC energies)
- Quarkonia: bound state of heavy quark-antiquark pairs
- Melting of quarkonia due to color screening is one of the early predicted signatures for QGP (Matsui&Satz, PLB178 (1986) 416)
- In analogy with QED Debye screening, the interaction potential in QGP was predicted to be screened above the Debye radius r_D :

$$V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr \quad \rightarrow V(r) = -\frac{4}{3}\frac{\alpha_s}{r}e^{-r/r_D}$$

QUARKONIA MELTING, THEORY

- So, in QGP binding of heavy quark pairs is subject to color screening
- Color-screening length r_D decreases with T
- Charmonium (cc) and bottonium (bb) states with $r > r_D$ expected to "melt" (not bind) \rightarrow be suppressed.

Charmoniur	arXiv:0901.3831					
state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69
$\Delta E \; [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05

Bottomonium

state	Υ	χ_{b0}	χ_{b1}	χ_{b2}	Υ ′	χ_{b0}'	χ_{b1}'	χ_{b2}'	Υ″
mass [GeV]	9.46	9.86	9.89	9.91	10.02	10.23	10.26	10.27	10.36
$\Delta E [\text{GeV}]$	1.10	0.70	0.67	0.64	0.53	0.34	0.30	0.29	0.20

QUARKONIA MELTING, EXPERIMENT

• Early CMS/LHC results:

Hierarchy of suppression level consistent with expectations based on binding energies

QUARKONIA MELTING, EXPERIMENT

• Clear signature of sequential melting of $\Upsilon(ns)$ states at RHIC and LHC Ordering of nuclear modification factors: $\Upsilon(3S) < \Upsilon(2S) < \Upsilon(1S)$

First direct observation of $\Upsilon(3S)$ in heavy ion collisions

"TAKE-HOME" POINTS:

- Hard probes for tomographic studies of the Quark Gluon Plasma is a new frontier for QCD studies
- Jets and heavy flavor probes provide a versatile set of tools for studying properties of the QGP medium at different scales
- Nuclear modification factors constrain QGP transport properties as well as mass and color-charge dependence of energy loss
- Jet quenching has many manifestations: energy balance shift in two-prong probes, energy redistribution in jet shapes, fragmentation functions, modification of jet splitting functions, etc.
- QGP color screening melts heavy quarkonia
- Sequential suppression in the charmonium and, especially, bottomonium sector probes experimentally the temperature of the medium

 ΔR

BONUS SLIDES

The UIC HENP Group's work is supported by US DOE-NP

leading particle

NUCLEAR PDF EFFECTS

• Parton distribution functions for bound nucleons are different than that of a free proton

 $f_{a/A,Z}^{i}(x_i, Q^2)$ – Nuclear *parton distribution functions,* defined as (nCTEQ15, PRD 93, 085037):

$$f_{a/A,Z}^{i}(x_{i},Q^{2}) = \frac{Z}{A} f_{p/A}^{i}(x_{i},Q^{2}) + \frac{A-Z}{A} f_{n/A}^{i}(x_{i},Q^{2})$$

where Bound nucleon PDFs $f_{p/A}^{i}(x_i, Q^2)$ are connected to free nucleon PDF as (EPPS16, *EPJ C77(2017)163*):

$$f_{p/A}^{i}(x_i, Q^2) = R_A^{i}(x_i, Q^2) f_p^{i}(x_i, Q^2)$$

• Nuclear PDF effects are important to account for to properly QGP properties

 \rightarrow pA collisions

hadror

AUG

 \sim

JET ALGORITHMS

Important requirements for Jet Finders:

- Simple implementation and reproducibility (theory/experiment)
- Tolerance to fragmentation details and UE
- Collinear- and infrared-safe

Two classes of Jet Finders:

- Cone-Type (Midpoint Cone (Tev), Iterative Cone (CMS), SISCone (LHC),... Not Infrared- & Collinear-Safe (but SISCone) Usually involve several arbitrary parameters Computationally fast Disfavored by theorists
- Sequential Recombination (k_T, Anti-k_T, Cambridge/Aachen) Infrared- & Collinear-Safe by construction Straightforward, though more computationally expensive Favored by theorists

JET (HARD) SUBSTRUCTURE STUDIES

• Grooming:

Idea: to isolate hard structure (hardest/earliest splitting) from soft BG contamination

Several Approaches

Filtering: re-cluster jets with smaller R_{filt} keep hardest subjets *Trimming*: re-cluster with smaller R_{trim} , keep subjets with $p_T > \varepsilon_{trim} p_T^{jet}$ *Pruning*: re-cluster with k_T or C/A and in each clustering step discard subjet if $\Delta R > R_{prun}$ and $\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} < Z_{prun}$

• Commonly used: Soft Drop algorithm: Start with anti- k_T jet, re-cluster with CA Undo the last clustering step, get $z_g = \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}}$ and ΔR Stop if $z_g > z_{cut} (\Delta R/R)^{\beta}$, else un-cluster again

SUBJET MOMENTUM SHARING

• Parton splitting is modified in central PbPb collisions

New insights on in-medium effects for theory, different interpretations

Medium recoil? Modified splitting? Coherent emitter?

SUBJET MOMENTUM SHARING

• Parton splitting for charged jets:

Enhancement of the number of small-angle splittings/ suppression of the largeangle symmetric splittings in central PbPb collisions

Number of splittings passing soft drop cut shifts down - color-charge effects?

AUG

 \sim

 \sim

 \odot

 \sim

CMS jet substructure studies by 2021 (from summary talk by A. Hinzmann and B. Nachman, CERN-TH workshop)

Reference	Final state	Jets, p _T (GeV)	Jet substructure observables	
<u>1204.3170</u> 7 TeV pp	jets	q/g-jets (AK7), 20 <p<sub>T<1000 q/g-jets (AK5), 50<p<sub>T<1000</p<sub></p<sub>	jet shapes, charged hadron multiplicity, width	
1205.5872 2.76 TeV pp/PbPb	dijets	q/g-jets (AK3), 40 <p<sub>T<320</p<sub>	fragmentation functions "shapes"	
1310.0878 2.76 TeV pp/PbPb 1406.0932 2.76 TeV pp/PbPb	jets	q/g-jets (AK3), 100 <p<sub>T<300</p<sub>	fragmentation functions	
1310.0878 2.76 TeV pp/PbPb	jets	q/g-jets (AK3), p _T >100	jet shapes	
1809.08602 5.02 TeV pp/PbPb		q-jets (AK3), p _T >30	jet shapes	
HIN-19-003 5.02 TeV pp/PbPb	dijets	q/g-jets (AK4), p _T >50	jet shapes	
QCD-10-041 7 TeV pp	dijets	q/g-jets (KT6), 97 <p<sub>7<1032</p<sub>	subjet multiplicities and p_T^{rel}	
1706.05868 8 TeV pp	jet	q/g-jets (AK5), 400 <p<sub>T<1500</p<sub>	jet charge "substructure"	
2004.00602 5.02 TeV pp/PbPb	jets	q/g-jets (AK4), p _T >120	jet charge	
1703.06330 8 TeV pp	ttbar	top-jets (CA12), p ₇ >400	jet mass	
<u>1303.4811</u> 8 TeV pp	dijets W/Z+jets	q/g-jets (AK7), 220 <p<sub>7<1500 q-jets (AK7, CA8/12), 125<p<sub>7<450</p<sub></p<sub>	jet mass, pruned/trimmed/filtered jet mass	
1805.05145 5.02 TeV pp/PbPb	jets	q/g-jets (AK4), 140 <p<sub>T<300</p<sub>	softdrop jet mass	
1807.05974 13 TeV pp	dijets	q/g-jets (AK8), 200 <p<sub>7<1300</p<sub>	jet mass, softdrop jet mass	
<u>1911.03800</u> 13 TeV pp	ttbar	top-jets (XC12), p ₇ >400	XCone-grommed jet mass	
1708.09429 5.02 TeV pp/PbPb	jets	q/g-jets (AK4), 140 <p<sub>T<500</p<sub>	softdrop splitting function	
<u>1808.07340</u> 13 TeV pp	ttbar	q-jets (AK4), p _T >30 g-jets (AK4), p _T >30 b-jets (AK4), p _T >30	jet substructure and softdrop observables	
<u>SMP-20-010</u> 13 TeV pp	dijets Z+jets	q/g-jets (AK4), 50 <p<sub>T<4000 q-jets (AK4), 50<p<sub>T<1000</p<sub></p<sub>	jet angularities	

OLGA EVDOKIMOV (UIC)

47

 \sim

HIN