

HEAVY ION COLLISIONS

QGP tomography: Jets and other Hard probes

Inspired by presentations by Helen Caines, Yen-Jie Lee, Yi Chen

DIRECT PROBES OF QGP

• Soft sector measurements allow to infer many important conclusions about QGP properties, but are always impacted by the entire evolution of the system.

$\overline{3}$

TOMOGRAPHIC PROBES FOR QGP

- Idea use *calibrated* external probes to study medium properties X-ray source
- For HIN collisions \rightarrow use self-generated (in)medium probes \rightarrow hard probes!
- "Hard" == large scale \rightarrow theory: suitable for perturbative QCD calculations high momentum transfer Q^2 high transverse momentum $\bm{{\mathsf{p}}}_\text{T}$ high mass m

WHY USE JETS FOR QGP STUDIES?

• What are Jets?

In theory: fragmented hard-scattered partons→ collimated spray of hadrons produced by energetic q or g

• Why Jets?

Jets are produced in the earliest phase of the collision

• Factorization of jet/particle production: yields described by convolution of

> $f_a^i(x_i, Q^2)$ $f_b^j(x_j,Q^2) \stackrel{\otimes}{\sim} \hat{\sigma}(ij \to kl) \otimes D_k^h(z',p_T^2)$ PDF **&NLO &FF**

• Jets are *calibrated* probes

JET PRODUCTION CROSS-SECTION

• Jets are well-calibrated probes: inclusive jet cross-sections described by NLO calculations over orders of magnitude in p_T and \sqrt{s}

 \circ \overline{C}

5

JETS AND PARTICLE PRODUCTION

To get particle yields from jets: need to fold in fragmentation functions

 $d\sigma^{h(k)}$ $d\sigma^{jet(k)}$ 1 $_{k}^{h}(z',p_{T}^{2})$ $\frac{dp_T^{h^2}dy^h dz'}{dt'}$ dp_T^2d $Z^{\prime 2}$ hadrons $f_a^i(x_i,Q^2)$ $\sqrt{\hat{\sigma}(ij \rightarrow kl)}$ $h_R^h(z', p_T^2)$ – fragmentation functions, $\mathbf{\mathbf{\downarrow}}$ hadrons assumed universal, extracted from e^+e^- annihilation (PETRA, LEP) and hadronic collisions (UA1,…)

Non-perturbative; limitations at low- p_T and for PID

AUGUST 2, 2024

D G

QGP PROPERTIES VIA JETS/HARD PROBES

- Jet Tomography: What happens if partons traverse a high energy density colored medium?
- Production of jets is unmodified^{*} short-distance process $(\hat{\sigma}(i j \rightarrow kl) -$ unchanged)
	- Jets are calibrated probes well-understood (and measured!) in pp
	- Jets studies allow to observe medium evolution and equilibration and explore medium properties at different scales

*except for nPDF effects

JET QUENCHING 101: JETS ARE QUENCHED!

JET QUENCHING, THEORY

- "Jet quenching," generally, is a collective term describing the range of phenomena arising from the interaction of hard probes with the QGP medium.
- One of the main features associated with jet quenching is partonic energy loss
- Interactions between hard-scattered parton and QGP: elastic scattering \rightarrow collisional energy loss (essential at lower p_T)
	- mass-dependent

gluon bremsstrahlung \rightarrow radiative energy loss (dominates at high p_T)

- depends on color-charge $\Delta E \sim \alpha_s C_R \hat{q} L^2$, C_R Casimir factor
- dead-cone effect: radiation probability is suppressed for $\theta < \frac{m_Q}{E_Q}$ $E_{\bm{Q}}$

low p_T high p_T Meaning: $\Delta E_q > \Delta E_q > \Delta E_Q$ $\Delta E_q > \Delta E_q > \Delta E_q$

9

JET STUDIES, EXPERIMENTALLY

Jets in e⁺e[−] collision Jets in AA collisions

Choice of tools (in hard regime):

 $Spectra/Production rates$ Dihadron correlations $|$ Jets/Dijets

Pros: straightforward versatile Eparton

Cons: *least differential* multiple BG sources, ambiguous,

no direct E measure fluctuations

 \subset

 \overline{b}

 \geq \subset \prec

(UIC

JET QUENCHING: START OF THE ERA

- Comparing particle production rates at high p_T provides (indirect) information on the fate of the jets in QGP
- Nuclear Modification Factor R_{AA} the first tool for jet quenching studies:

 $R_{AA}(p_T) =$ $d^2N^{AA}/dp_Td\eta$ $\langle N_{bin} > d^2 N^{pp} / dp_T d\eta$

Number of binary collisions $\langle N_{bin} \rangle$ is extracted from Glauber model calculations

JET QUENCHING: START OF THE ERA

- Comparing particle production rates at high p_T provides (indirect) information on the fate of the jets in QGP
- Nuclear Modification Factor R_{AA} the first tool for jet quenching studies:

 $R_{AA}(p_T) =$ $d^2N^{AA}/dp_Td\eta$ $\langle N_{bin} > d^2 N^{pp} / dp_T d\eta$

sQGP - strongly coupled plasma!

Large energy loss for colored probes

How reliable are the Glauber model calculations?

BINARY SCALING AND R_{AA}

• HIN experiments used colorless probes to check N_{bin} scaling:

Isolated photons

$$
Z \rightarrow \mu + \mu -
$$

$$
W \rightarrow \mu \nu
$$

• N_{bin} is well-modeled and N_{bin} -scaling for hard processes is confirmed experimentally

 \triangleright

D G

FLAVOR DEPENDANCE OF QUENCHING

FLAVOR DEPENDANCE, TAKE TWO

- At high p_T nuclear modification goes hand in hand with azimuthal anisotropy – two different ways to measure/characterize pathlength dependance of partonic energy loss
- LHC experiments : significant v_2 for both charm and beauty in PbPb events, different p_T dependence
- Charm: $v_2 \sim$ below light hadron v_2
- Beauty v_2 < charm v_2 , but sizable
	- \rightarrow indicate strong coupling to the medium
- What about p_T dependence?
	- \rightarrow need to disentangle energy loss, hadronization, flow, CNM...

C OLGA EVDOKIMOV (UIC) Ω \triangleright Ţ, \prec \Box \subset **KIMO** \prec (UIC

16

FLAVOR DEPENDANCE, THEORY INPUT

- Partonic energy loss is manifested in R_{AA} and v_2 at high p_T ; simultaneous description of both measurements is a test for quenching models
- Simultaneous description of charm R_{AA} and v_2 is challenging for the models .
- Models that seem to do best include both collisional and radiative energy loss and nPDF effects (shadowing) .

C

PROOF OF JET- MEDIUM INTERACTIONS

Signature two-particle correlation result:

- Evidence of quenching: disappearance of the away side jet in central AuAu collisions: evidence for strongly interacting medium
- Evidence of **non**-quenching: effect vanishes in peripheral/dAu collisions

 \overline{C}

17

PROOF OF JET- MEDIUM INTERACTIONS

Signature two-particle correlation result:

- Evidence of quenching: disappearance of the away side jet in central AuAu collisions: evidence for strongly interacting medium
- Evidence of **non**-quenching: effect vanishes in peripheral/dAu collisions

C

C

Signature two-particle correlation result:

- Evidence of quenching: disappearance of the away side jet in central AuAu collisions: evidence for strongly interacting medium
- Evidence of **non**-quenching: effect vanishes in peripheral/dAu collisions

 \overline{C}

19

AUGUST 2, 2024

 \overline{C}

 \subset

 ∞ $\overline{}$ \overline{C}

 \blacktriangleright **D G**

PROOF OF JET- MEDIUM INTERACTIONS

Signature two-particle correlation result:

- Evidence of quenching: disappearance of the away side jet in central AuAu collisions: evidence for strongly interacting medium
- Evidence of **non**-quenching: effect vanishes in peripheral/dAu collisions

DISCLAIMER ON THE "DISAPPEARANCE"

 $1/\mathbf{N}_{\mathrm{trigger}}$ dN/d($\Delta\phi$)

• Disappearance of the away side jet in central AuAu collisions at RHIC:

> Evidence for strongly interacting medium Effect vanishes in peripheral/dAu collisions

 $\frac{2}{3}$
4 "Disappearance" is accidental!

Two high- p_T hadrons (or high & low p_T) combination): reappearance of the away-side jet.

Redistribution is a better way to think about this: energy gets shifted from higher to lower momenta

LET'S GET US SOME JETS!

- In Theory: jets are proxies for hard-scattered partons
- In Experiment: "Jet is what your jet-finder gives you" (P.J.)
- Jet is defined by the reconstruction algorithm:
	- 1) What particles belong to a jet
	- 2) How particle momenta combined into jet $\mathtt{p}_\mathtt{T}$

Particularly difficult for AA data due to UE background: R choice dilemma

OLGA EVDOKIMOV (UIC) \triangleright \prec \cup \circ Λ O M I X (010)

C

\triangleright

23

SEQUENTIAL RECOMBINATION ALGORITHMS

• Sequential recombination methods are based on distance measure:

$$
d_{ij} = \min(p_{T,i}^n, p_{T,j}^n) \frac{\Delta R^2}{R^2} \quad \text{and} \quad d_{iB} = p_{T,i}^n
$$

• Most commonly used:

• Do iteratively:

compute all distances d_{ij} and d_{iB} , find the smallest If smallest is a d_{ij} , combine (sum four momenta) for i and If smallest is a d_{iB} , call i a jet (remove). Stop then no objects left.

• All three algorithms (+SISCone) are available in the Fastjet package: <http://fastjet.fr/>

DEALING WITH (HIN) BACKGROUND

The background in HIN events is anisotropic and fluctuating \rightarrow simple "flat-line" subtraction won't work. Need:

1) Modulated BG (shape!) 2) Corrections/unfolding for fluctuations (or reference smearing)

Two general strategies:

Area Subtraction $p_T^{(corr)} = p_T^{(reco)} - \rho A_j$ ρ – average p_T density for BG w/o jets $Aj - jet$ area from "ghost" counts

 \circ $\overline{\mathcal{C}}$

QUENCHING EFFECTS IN JETS

• Details of the energy loss : jet R_{AA} maps quenching effects in PbPb from 30GeV to 1TeV

• Search for color-charge, mass, and/or flavor effects in energy loss:

Photon-tagged jets (higher fraction of q-jets): less suppressed compared to inclusive jets b-jets (muon tagger): less suppressed compared to inclusive jets D^0 -tagged jets – indications of smaller suppression compared to inclusive jets

QUENCHING BECOMES *VISIBLE* IN DIJETS

- Di-jets in PbPb: back-to-back, but fraction of imbalanced dijets grows with collision centrality (no modifications in pPb collisions)
- Momentum balance is preserved over the entire event; "missing" p_T in hard sector is balanced by soft hadrons away from jet-axis

26

\triangleright D G \overline{C}

 \overline{C}

γ ²⁷

QUENCHING EFFECTS IN JETS

• Both side of dijet are quenched \rightarrow dijet collection is surface-biased \rightarrow Use colorless probes to reduce/change geometry bias

• Details of the energy loss:

Dijet, γ -jet, Z -jet – energy balance is disturbed by QGP (Centrality-dependent) changes in $x_{J\gamma}$, x_{JZ} momentum balance

JET LONGITUDINAL STRUCTURE

• Jet fragmentation function: fractional momentum distribution within the jets

Excess of soft fragments/depletion at intermediate momenta Excess of high- p_T tracks – evidence of color-charge effects?

FRAGMENTATION FOR γ +JETS

• Quark-rich g-jet sample allows tests for color-charge effects

Enhancement of particles carrying small momentum fraction Depletion of mid/high momentum particles

JET INNER WORKINGS: SHAPES

- Jet shapes: measure transverse structure of jet momenta
- Fractional transverse energy distribution: $\rho(r) = \frac{1}{N}$ N j $\frac{1}{\delta r}\sum_j$ $\sum_{trk \in [r_a,r_b)} p_T^{t_a^+}$ $\Sigma_{trk\ \in [o,R)}$ $p_T^{t^*}$

- Jet Shapes: PbPb to pp ratio @ 2.76 TeV :
	- Little/no medium effects in peripheral events
		- Enhancement at low $p_T /$ larger r in central collisions

JET SHAPES: QUARK VS. GLUON

• Jet Shapes: quark vs. gluon effects are explored via comparison of inclusive jets and gamma-tagged jets

Similar jet shape modification trends with inclusive jets in central PbPb data: energy shift towards larger radii

What about the magnitudes? Can't compare ratios directly; must mind the reference!

JET SHAPES, FULL FLOW

• Can now measurement of jet shapes up to large radial distances

(Compare to previous measurement in light blue)

Ω \mathcal{L} Ţ, \prec $\overline{}$ \subset \mathbbmss{N} \geq \subset \prec

 \subset

JET- MEDIUM INTERACTIONS

• A note on importance of interfacing multiple measurements with theory:

Jet R_{AA} : inclusion of the jet-induced medium flow decreases suppression, but effect is small for small cone sizes and large cone sizes are challenging for HIN

Jet shapes: soft shower thermalization – more collimated hard core; mediuminduced radiation – broader jet shape; inclusion of the jet-induced medium flow – critical at large r

 \overline{C}

UIC

JET MASS MEASUREMENTS

• Jet mass distributions:

Jet mass from charged tracks

Jet mass from calorimeter energy

No significant modifications are observed

Large increases in jet mass predicted by quenching models are excluded by the data

 \triangleright

CHANGING TOPIC: ANOTHER HARD PROBE

OR: one more time about QGP temperature

QUARKONIA MELTING

- Heavy quarks (c, b) are produced in a large- $Q²$ processes at the initial stage of the collision due to their large masses: $m_c \sim 1.3$ GeV/ c^2 , $m_b \sim 4.2$ GeV/ c^2 (negligible in -QGP production even at LHC energies)
- Quarkonia: bound state of heavy quark -antiquark pairs
- Melting of quarkonia due to color screening is one of the early predicted signatures for QGP (Matsui&Satz, PLB178 (1986) 416)
- In analogy with QED Debye screening, the interaction potential in QGP was predicted to be screened above the Debye radius r_D :

$$
V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr \rightarrow V(r) = -\frac{4}{3}\frac{\alpha_s}{r}e^{-r/r_D}
$$

QUARKONIA MELTING, THEORY

- So, in QGP binding of heavy quark pairs is subject to color screening
- Color-screening length r_D decreases with T
- Charmonium (cc) and bottonium (bb) states with $r > r_D$ expected to "melt" (not bind) \rightarrow be suppressed.

Bottomonium

QUARKONIA MELTING, EXPERIMENT

Visible melting in upsilon family $(Y(3S)$ is not yet directly observed in HIN) Hierarchy of suppression level consistent with expectations based on binding energies

QUARKONIA MELTING, EXPERIMENT

Clear signature of sequential melting of Υ (ns) states at RHIC and LHC Ordering of nuclear modification factors: $\Upsilon(3S) < \Upsilon(2S) < \Upsilon(1S)$

First direct observation of $\Upsilon(3S)$ in heavy ion collisions

"TAKE - HOME" POINTS:

- Hard probes for tomographic studies of the Quark Gluon Plasma is a new frontier for QCD studies
- Jets and heavy flavor probes provide a versatile set of tools for studying properties of the QGP medium at different scales
- Nuclear modification factors constrain QGP transport properties as well as mass and color-charge dependence of energy loss
- Jet quenching has many manifestations: energy balance shift in two-prong probes, energy redistribution in jet shapes, fragmentation functions, modification of jet splitting functions, etc.
- QGP color screening melts heavy quarkonia
- Sequential suppression in the charmonium and, especially, bottomonium sector probes experimentally the temperature of the medium

γ

 ΔR

Ζ

₹,,,,,,,,,,,

BONUS SLIDES

The UIC HENP Group's work is supported by US DOE-NP

leading particle

 $f_{b/A,Z}^{j}(x_j, Q^2)$

42

NUCLEAR PDF EFFECTS

Parton distribution functions for bound nucleons are different than that of a free proton

 $f_{a/A,Z}^l(x_i, Q^2)$ – Nuclear *parton distribution functions*, defined as (nCTEQ15, PRD 93, 085037): $f_{a/A,Z}^{\dagger}(x_i, Q^2)$

$$
f_{a/A,Z}^{i}(x_i, Q^2) = \frac{Z}{A} f_{p/A}^{i}(x_i, Q^2) + \frac{A-Z}{A} f_{n/A}^{i}(x_i, Q^2)
$$

where Bound nucleon PDFs $f_{p/A}^l(x_i, Q^2)$ are connected to free nucleon PDF as (EPPS16, *EPJ C77*(2017)163):

$$
f_{p/A}^i(x_i, Q^2) = R_A^i(x_i, Q^2) f_p^i(x_i, Q^2)
$$

• Nuclear PDF effects are important to account for to properly $\frac{1.0}{0.9}$ QGP properties

 \rightarrow pA collisions

hadro

q

JET ALGORITHMS

Important requirements for Jet Finders:

- Simple implementation and reproducibility (theory/experiment)
- Tolerance to fragmentation details and UE
- Collinear- and infrared-safe

Two classes of Jet Finders:

- Cone-Type (Midpoint Cone (Tev), Iterative Cone (CMS), SISCone (LHC),…) Not Infrared- & Collinear -Safe (but SISCone) Usually involve several arbitrary parameters Computationally fast Disfavored by theorists
- Sequential Recombination (k_T , Anti- k_T , Cambridge/Aachen) Infrared- & Collinear -Safe by construction Straightforward, though more computationally expensive Favored by theorists

JET (HARD) SUBSTRUCTURE STUDIES

• Grooming:

Idea: to isolate hard structure (hardest/earliest splitting) from soft BG contamination

• Several Approaches

Filtering: re-cluster jets with smaller R_{filt} keep hardest subjets Trimming: re-cluster with smaller R_{trim} , keep subjets with $p_T > \varepsilon_{trim} p_T^{jet}$ Pruning: re-cluster with k_T or C/A and in each clustering step discard subjet if $\Delta R > R_{prun}$ and $\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} < z_{prun}$

• Commonly used: Soft Drop algorithm: Start with anti- k_T jet, re-cluster with CA Undo the last clustering step, get $z_g = \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}}$ p_{T1} + p_T and ΔR Stop if $z_q > z_{cut}(\Delta R/R)^{\beta}$, else un-cluster again

SUBJET MOMENTUM SHARING

• Parton splitting is modified in central PbPb collisions

Medium recoil? Modified splitting? Coherent emitter?

SUBJET MOMENTUM SHARING

• Parton splitting for charged jets:

Enhancement of the number of small-angle splittings/ suppression of the largeangle symmetric splittings in central PbPb collisions

Number of splittings passing soft drop cut shifts down – color-charge effects?

 \mathcal{L}

 \subset

 \overline{C}

46

CMS jet substructure studies by 2021 (from summary talk by A. Hinzmann and B. Nachman, CERN -TH workshop)

HIN

