
H E AV Y  I O N  C O L L I S I O N S
QGP tomography: Jets and other Hard probes

Insp i red  by  p re senta t ions  by  Helen  Caines , Yen-J ie  Lee,  Yi  Chen



D I R E C T  P RO B E S  O F  Q G P

• Soft sector measurements allow to infer many important conclusions about QGP 
properties, but are always impacted by the entire evolution of the system.  
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Elastic scattering
and kinetic freeze-out

Hadronic interaction
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ε

pre-equilibrium

Bulk particle distributions
QGP hadronizes into soft hadrons;  99.9% of total yields

No direct access to details of QGP phase

Need QGP tomography
To directly access plasma properties

q

q



T O M O G R A P H I C  P RO B E S  F O R  Q G P

• Idea  - use calibrated external probes to study medium properties 

• For HIN collisions → use self-generated (in)medium probes → hard probes!

• “Hard” == large scale → theory: suitable for perturbative QCD calculations
 high momentum transfer Q2

 high transverse momentum pT

 high mass m
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W H Y  U S E  J E T S  F O R  Q G P  S T U D I E S ?

• What are Jets?  

 In theory:  fragmented hard-scattered partons→ 
collimated spray of hadrons produced by energetic q or g

• Why Jets?  

Jets are produced in the earliest phase of the collision

• Factorization of jet/particle production: yields 
described by convolution of 

𝑃𝑃𝑃𝑃𝑃𝑃 ⨂𝑁𝑁𝑁𝑁𝑁𝑁 ⨂𝑃𝑃𝑃𝑃
• Jets are calibrated probes
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J E T  P RO D U C T I O N  C RO S S - S E C T I O N

• Jets are well-calibrated probes: inclusive jet cross-sections described by NLO 
calculations over orders of magnitude in 𝑝𝑝𝑇𝑇 and 𝑠𝑠
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PRL 97 (2006)252001

RHIC

Tevatron

PRL101(2008)062001 JHEP 09 (2017) 020

LHC



J E T S  A N D  P A R T I C L E  P R O D U C T I O N

To get particle yields from jets: need to fold in fragmentation functions

𝑑𝑑𝜎𝜎ℎ(𝑘𝑘)

𝑑𝑑𝑝𝑝𝑇𝑇
ℎ 2𝑑𝑑𝑦𝑦ℎ𝑑𝑑𝑧𝑧′ =

𝑑𝑑𝜎𝜎𝑗𝑗𝑗𝑗𝑗𝑗 𝑘𝑘

𝑑𝑑𝑝𝑝𝑇𝑇
2𝑑𝑑𝑦𝑦

1
𝑧𝑧′2 𝑃𝑃𝑘𝑘

ℎ(𝑧𝑧′, 𝑝𝑝𝑇𝑇
2)

𝑃𝑃𝑘𝑘
ℎ(𝑧𝑧′, 𝑝𝑝𝑇𝑇

2) – fragmentation functions, 

assumed universal, extracted  from 𝑒𝑒+𝑒𝑒− annihilation (PETRA, LEP)

and hadronic collisions (UA1,…)

Non-perturbative;  limitations at low-pT and for PID
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Q G P  P R O P E R T I E S  V I A  J E T S / H A R D  P R O B E S

• Jet Tomography:  What happens if partons traverse a high 
energy density colored medium?

• Production of jets is unmodified* – short-distance process 
         ( �𝜎𝜎(𝑖𝑖𝑖𝑖 → 𝑘𝑘𝑘𝑘) – unchanged)

• Jets are calibrated  probes – well-understood (and 
measured!) in pp

• Jets studies allow to observe medium evolution and 
equilibration and explore medium properties at different 
scales

 *except for nPDF effects
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J E T  
Q U E N C H I N G  

1 0 1 :  J E T S  A R E  
Q U E N C H E D !
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J E T  Q U E N C H I N G ,  T H E O RY

• “Jet quenching,” generally,  is a collective term describing the range of phenomena arising 
from the interaction of hard probes with the QGP medium.

• One of the main features associated with jet quenching is partonic energy loss 

• Interactions between hard-scattered parton and QGP:
elastic scattering → collisional energy loss (essential at lower pT)

 - mass-dependent

gluon bremsstrahlung → radiative energy loss (dominates at high pT)

 - depends on color-charge ∆𝐸𝐸~𝛼𝛼𝑠𝑠𝑪𝑪𝑹𝑹 �𝑞𝑞𝑁𝑁2, 𝐶𝐶𝑅𝑅 - Casimir factor

 - dead-cone effect: radiation probability is suppressed for 𝜃𝜃 < 𝑚𝑚𝑄𝑄
𝐸𝐸𝑄𝑄

 

       low pT    high pT

  Meaning:   Δ𝐸𝐸𝑔𝑔 > Δ𝐸𝐸𝑞𝑞 > Δ𝐸𝐸𝑄𝑄 Δ𝐸𝐸𝑔𝑔 > Δ𝐸𝐸𝑞𝑞~Δ𝐸𝐸𝑄𝑄
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J E T  S T U D I E S ,  E X P E R I M E N TA L LY
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Jets in e+e− collision Jets in AA collisions

Choice of tools (in hard regime):

Pros:          straightforward             versatile                              Eparton 

Cons:         least differential                     multiple BG sources,                   ambiguous,
                 no direct E measure                   fluctuations

Jets/DijetsDihadron correlationsSpectra/Production rates



J E T  Q U E N C H I N G :  S TA RT  O F  T H E  E R A

• Comparing particle production rates at high pT provides (indirect) information on the 
fate of the jets in QGP

• Nuclear Modification Factor RAA – the first tool for

      jet quenching studies:

• Number of binary collisions < 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏> is extracted from 

       Glauber model calculations
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𝑅𝑅𝐴𝐴𝐴𝐴 𝑝𝑝𝑇𝑇 =
𝑑𝑑2𝑁𝑁𝐴𝐴𝐴𝐴/𝑑𝑑𝑝𝑝𝑇𝑇𝑑𝑑𝑑𝑑

< 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏> 𝑑𝑑2𝑁𝑁𝑝𝑝𝑝𝑝/𝑑𝑑𝑝𝑝𝑇𝑇𝑑𝑑𝑑𝑑

PRL 88 (2002)022301

enhancement



J E T  Q U E N C H I N G :  S TA RT  O F  T H E  E R A

• Comparing particle production rates at high pT provides (indirect) information on the 
fate of the jets in QGP

• Nuclear Modification Factor RAA – the first tool for

      jet quenching studies:

• sQGP - strongly coupled  plasma!
 Large energy loss for colored probes

          How reliable are the Glauber model calculations?
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𝑅𝑅𝐴𝐴𝐴𝐴 𝑝𝑝𝑇𝑇 =
𝑑𝑑2𝑁𝑁𝐴𝐴𝐴𝐴/𝑑𝑑𝑝𝑝𝑇𝑇𝑑𝑑𝑑𝑑

< 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏> 𝑑𝑑2𝑁𝑁𝑝𝑝𝑝𝑝/𝑑𝑑𝑝𝑝𝑇𝑇𝑑𝑑𝑑𝑑



B I N A RY  S C A L I N G  A N D  R A A

• HIN experiments used colorless probes to check 
Nbin scaling:
 Isolated photons

         𝑍𝑍 → 𝜇𝜇 + 𝜇𝜇 −  

         𝑊𝑊 → 𝜇𝜇 𝜈𝜈 

• Nbin is well-modeled and Nbin-scaling for hard 
processes is confirmed experimentally 
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F L AV O R  D E P E N DA N C E  O F  Q U E N C H I N G

• Nuclear modification for prompt- and 
non-prompt D0  , non-prompt J/ψ, 𝐵𝐵±

• Lower pT : flavor dependence of energy 
loss
 𝑅𝑅𝐴𝐴𝐴𝐴 (𝑏𝑏)>𝑅𝑅𝐴𝐴𝐴𝐴 (𝑐𝑐)~𝑅𝑅𝐴𝐴𝐴𝐴(light flavors)

Δ𝐸𝐸𝑞𝑞 > Δ𝐸𝐸𝑐𝑐~Δ𝐸𝐸𝑏𝑏

• High pT :
 𝑅𝑅𝐴𝐴𝐴𝐴 (𝑏𝑏)~𝑅𝑅𝐴𝐴𝐴𝐴 (𝑐𝑐)~𝑅𝑅𝐴𝐴𝐴𝐴(light flavors)

Δ𝐸𝐸𝑞𝑞~Δ𝐸𝐸𝑐𝑐~Δ𝐸𝐸𝑏𝑏

• Recall theory input: radiative energy loss 
dominates at high pT, collisional 
contributions relevant at lower momenta
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PRL 123(2019)022001ALI-PUB-501944



F L AV O R  D E P E N DA N C E ,  TA K E  T WO

• At high pT nuclear modification goes hand in hand 
with azimuthal anisotropy – two different ways to 
measure/characterize pathlength dependance of 
partonic energy loss

• LHC experiments : significant 𝑣𝑣2 for both charm 
and beauty in PbPb events, different 𝑝𝑝𝑇𝑇 dependence

• Charm: 𝑣𝑣2 ~ below light hadron 𝑣𝑣2  

• Beauty 𝑣𝑣2 < charm 𝑣𝑣2, but sizable  

→ indicate strong coupling to the medium

• What about pT dependence? 

→ need to disentangle energy loss,  hadronization, 
flow, CNM...
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R. Arnaldi, HP2020



F L AV O R  D E P E N DA N C E ,  
T H E O RY  I N P U T

• Partonic energy loss is manifested in RAA and v2 at high pT ; 
simultaneous description of both measurements is a test for 
quenching models

• Simultaneous description of charm RAA and v2 is 
challenging for the models.

•  Models that seem to do best include both collisional and 
radiative energy loss and nPDF effects (shadowing).
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P RO O F  O F  J E T- M E D I U M  I N T E R A C T I O N S
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Signature two-particle correlation result:

• Evidence of quenching: disappearance of the away side jet in central AuAu collisions: evidence 
for strongly interacting medium

• Evidence of non-quenching: effect vanishes in peripheral/dAu collisions
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P RO O F  O F  J E T- M E D I U M  I N T E R A C T I O N S
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Signature two-particle correlation result:

• Evidence of quenching: disappearance of the away side jet in central AuAu collisions: evidence 
for strongly interacting medium

• Evidence of non-quenching: effect vanishes in peripheral/dAu collisions
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P RO O F  O F  J E T- M E D I U M  I N T E R A C T I O N S
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Signature two-particle correlation result:

• Evidence of quenching: disappearance of the away side jet in central AuAu collisions: evidence 
for strongly interacting medium

• Evidence of non-quenching: effect vanishes in peripheral/dAu collisions
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P RO O F  O F  J E T- M E D I U M  I N T E R A C T I O N S
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Signature two-particle correlation result:

• Evidence of quenching: disappearance of the away side jet in central AuAu collisions: evidence 
for strongly interacting medium

• Evidence of non-quenching: effect vanishes in peripheral/dAu collisions
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D I S C L A I M E R  O N  T H E  “ D I S A P P E A R A N C E ”
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• Disappearance of the away side jet in central 
AuAu collisions at RHIC:
 Evidence for strongly interacting medium
 Effect vanishes in peripheral/dAu 

collisions

•   “Disappearance” is accidental! 
 Two high-pT hadrons (or high & low pT 

combination): reappearance of the 
away-side jet.

Redistribution is a better way to think about 
this: energy gets shifted from higher to lower 
momenta



L E T ’ S  G E T  U S  S O M E  J E T S !

• In Theory: jets are proxies for hard-scattered partons

• In Experiment: “Jet is what your jet-finder gives you” 
(P.J.)

• Jet is defined by the reconstruction algorithm: 

 1) What particles belong to a jet

 2) How particle momenta combined into jet pT 

Particularly difficult for AA data due to UE background: R 
choice dilemma
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AuAu @ 0.2 TeV



S E Q U E N T I A L  R E C O M B I N A T I O N  
A L G O R I T H M S

• Sequential recombination methods are based on distance measure:    

 𝑑𝑑𝑏𝑏𝑗𝑗 = min(𝑝𝑝𝑇𝑇,𝑏𝑏
𝑏𝑏 , 𝑝𝑝𝑇𝑇,𝑗𝑗

𝑏𝑏 ) ∆𝑅𝑅2

𝑅𝑅2   and  𝑑𝑑𝑏𝑏𝐵𝐵 = 𝑝𝑝𝑇𝑇,𝑏𝑏
𝑏𝑏

• Most commonly used: 
kT algorithm   n = 2 PLB641(2006)57
anti-kT algorithm  n = −2 JHEP 0804 (2008) 063
Cambridge-Aachen algorithm n = 0  JHEP 9708 (1997) 001

• Do iteratively: 
compute all distances 𝑑𝑑𝑖𝑖𝑖𝑖 and 𝑑𝑑𝑖𝑖𝐵𝐵, find the smallest
If smallest is a 𝑑𝑑𝑖𝑖𝑖𝑖, combine (sum four momenta) for 𝑖𝑖 and 𝑖𝑖
If smallest is a 𝑑𝑑𝑖𝑖𝐵𝐵, call 𝑖𝑖 a jet (remove). Stop then no objects left.  

• All three algorithms (+SISCone) are available in the 

     Fastjet package: http://fastjet.fr/
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http://fastjet.fr/


D E A L I N G  W I T H  ( H I N )  B A C K G RO U N D

The background in HIN events is anisotropic and fluctuating → simple “flat-line” subtraction 
won’t work. Need:

1) Modulated BG (shape!)  2) Corrections/unfolding for fluctuations (or reference smearing)

Two general strategies:
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24“Subtract then Cluster” 

JHEP06(2014)092

“Cluster then Subtract”
Area Subtraction

𝑝𝑝𝑇𝑇
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑝𝑝𝑇𝑇

(𝑐𝑐𝑗𝑗𝑐𝑐𝑐𝑐) − 𝜌𝜌𝐴𝐴𝑗𝑗
𝜌𝜌 – average 𝑝𝑝𝑇𝑇 density for BG w/o jets

𝐴𝐴𝑖𝑖 – jet area from “ghost” counts 

Constituent Subtraction



• Details of the energy loss : jet RAA maps quenching effects in PbPb from 30GeV to 1TeV

• Search for color-charge, mass, and/or flavor effects in energy loss:
  Photon-tagged jets (higher fraction of q-jets): less suppressed compared to inclusive jets

  b-jets (muon tagger):  less suppressed compared to inclusive jets

  D0-tagged jets – indications of smaller suppression compared to inclusive jets
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Q U E N C H I N G  E F F E C T S  I N  J E T S



Q U E N C H I N G  B E C O M E S  V I S I B L E  I N  D I J E T S

• Di-jets in PbPb:  back-to-back, but fraction of imbalanced dijets grows with 
collision centrality (no modifications in pPb collisions)

• Momentum balance is preserved over the entire event; “missing” pT in hard sector 
is balanced by soft hadrons away from jet-axis
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JHEP 01 (2016) 006PRL 105 (2010) 252303

Dijet momentum imbalance: 𝐴𝐴𝐽𝐽 = 𝑝𝑝𝑇𝑇,1−𝑝𝑝𝑇𝑇,2
𝑝𝑝𝑇𝑇,1+𝑝𝑝𝑇𝑇,2

PbPb @ 2.76 TeV



Q U E N C H I N G  E F F E C T S  I N  J E T S

• Both side of dijet are quenched → dijet collection is surface-biased → Use colorless 
probes to reduce/change geometry bias

• Details of the energy loss:
 Dijet, 𝛾𝛾-jet, 𝑍𝑍-jet – energy balance is disturbed by QGP
 (Centrality-dependent) changes in 𝑥𝑥𝐽𝐽𝛾𝛾, 𝑥𝑥𝐽𝐽𝑍𝑍 momentum balance
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ΖPbPb @ 5.02 TeV



J E T  L O N G I T U D I N A L  S T R U C T U R E

• Jet fragmentation function: fractional momentum distribution within the jets

 Excess of soft fragments/depletion at intermediate momenta

 Excess of high-pT tracks – evidence of color-charge effects?
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F R A G M E N TAT I O N  F O R  γ  + J E T S
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• Quark-rich g-jet sample allows tests for color-charge effects

 Enhancement of particles carrying small momentum fraction
 Depletion of mid/high momentum particles



J E T  I N N E R  WO R K I N G S :  S H A P E S

• Jet shapes: measure transverse structure of jet momenta

• Fractional transverse energy distribution: 𝜌𝜌(𝑟𝑟) = 1
𝑁𝑁𝑗𝑗

1
𝛿𝛿𝑐𝑐

∑𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠

∑
𝑡𝑡𝑟𝑟𝑟𝑟 ∈�𝑟𝑟𝑎𝑎 ,𝑟𝑟𝑏𝑏)

𝑝𝑝𝑇𝑇
𝑡𝑡𝑟𝑟𝑟𝑟

∑𝑡𝑡𝑟𝑟𝑟𝑟 ∈[𝑜𝑜,𝑅𝑅) 𝑝𝑝𝑇𝑇
𝑡𝑡𝑟𝑟𝑟𝑟

• Jet Shapes: PbPb to pp ratio @ 2.76 TeV :

 Little/no medium effects in peripheral events

 Enhancement at low pT / larger r in central collisions
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J E T  S H A P E S :  Q U A R K  V S .  G L U O N

• Jet Shapes: quark vs. gluon effects are explored via comparison of inclusive jets and 
gamma-tagged jets

 Similar jet shape modification trends with inclusive jets in central PbPb data: 
energy shift towards larger radii

 What about the magnitudes?  Can’t compare ratios directly; must mind the reference!
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J E T  S H A P E S ,  F U L L  F L OW

• Can now measurement of jet shapes up to large radial distances

(Compare to previous measurement in light blue)
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J E T- M E D I U M  I N T E R A C T I O N S

• A note on importance of interfacing multiple measurements with theory:

 Jet RAA: inclusion of the jet-induced medium flow decreases suppression, but 
effect is small for small cone sizes and large cone sizes are challenging for HIN

 Jet shapes: soft shower thermalization  –  more collimated hard core; medium-
 induced radiation – broader jet shape; inclusion of the jet-induced medium flow 
– critical at large r
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J E T  M A S S  M E A S U R E M E N T S

• Jet mass distributions:

 No significant modifications are observed

 Large increases in jet mass predicted by quenching models are excluded by the data
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C H A N G I N G  T O P I C :  A N O T H E R  
H A R D  P RO B E  

OR: one more time about QGP temperature
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Q U A R K O N I A  M E LT I N G

• Heavy quarks (c, b) are produced in a large-Q2 processes at the initial stage of the 
collision due to their large masses: 𝑚𝑚𝑐𝑐~1.3 GeV/𝑐𝑐2, 𝑚𝑚𝑏𝑏~4.2 GeV/𝑐𝑐2 (negligible 
in-QGP production even at LHC energies)

• Quarkonia: bound state of heavy quark-antiquark pairs

• Melting of quarkonia due to color screening is one of the early predicted signatures 
for QGP (Matsui&Satz, PLB178 (1986) 416)

• In analogy with QED Debye screening, the interaction potential in QGP was 
predicted to be screened above the Debye radius 𝑟𝑟𝐷𝐷 :

𝑉𝑉 𝑟𝑟 = −
4
3

𝛼𝛼𝑠𝑠

𝑟𝑟
+ 𝑘𝑘𝑟𝑟 → 𝑉𝑉 𝑟𝑟 = −

4
3

𝛼𝛼𝑠𝑠

𝑟𝑟
𝑒𝑒−𝑐𝑐/𝑐𝑐𝐷𝐷
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Q U A R K O N I A  M E LT I N G ,  T H E O RY

• So, in QGP binding of heavy quark pairs is subject to color screening

• Color-screening length 𝑟𝑟𝐷𝐷 decreases with T

• Charmonium (cc) and bottonium (bb) states with 𝑟𝑟 > 𝑟𝑟𝐷𝐷 expected to “melt” (not bind) 
→ be suppressed.
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Q U A R K O N I A  M E LT I N G ,  E X P E R I M E N T

• Early CMS/LHC results:

 Visible melting in upsilon family (Υ(3𝑆𝑆) is not yet directly observed in HIN)

 Hierarchy of suppression level consistent with expectations based on binding energies
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Q U A R K O N I A  M E LT I N G ,  E X P E R I M E N T

• Clear signature of sequential melting of ϒ(ns) states at RHIC and LHC
 Ordering of nuclear modification factors: ϒ(3S)< ϒ(2S)< ϒ(1S)
 First direct observation of ϒ(3S) in heavy ion collisions
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“ TA K E - H O M E ” P O I N T S :

• Hard probes for tomographic studies of the Quark Gluon Plasma is a new 
frontier for QCD studies

• Jets and heavy flavor probes provide a versatile set of tools for studying 
properties of the QGP medium at different scales

• Nuclear modification factors constrain QGP transport properties as well as 
mass and color-charge dependence of energy loss

• Jet quenching has many manifestations: energy balance shift in two-prong 
probes, energy redistribution in jet shapes, fragmentation functions, 
modification of jet splitting functions, etc.

• QGP color screening melts heavy quarkonia

• Sequential suppression in the charmonium and, especially, bottomonium sector 
probes experimentally the temperature of the medium
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B O N U S  S L I D E S

The UIC HENP Group’s  work i s  suppor ted by US DOE-NP
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N U C L E A R  P D F  E F F E C T S

• Parton distribution functions for bound nucleons  are different than that 
of a free proton 

𝑓𝑓 ⁄𝑎𝑎 𝐴𝐴,𝑍𝑍
𝑏𝑏 (𝑥𝑥𝑏𝑏 , 𝑄𝑄2) – Nuclear parton distribution functions, defined as (nCTEQ15, 

PRD 93, 085037): 

𝑓𝑓 ⁄𝑎𝑎 𝐴𝐴,𝑍𝑍
𝑏𝑏 𝑥𝑥𝑏𝑏 , 𝑄𝑄2 = 𝑍𝑍

𝐴𝐴
𝑓𝑓 ⁄𝑝𝑝 𝐴𝐴

𝑏𝑏 𝑥𝑥𝑏𝑏 , 𝑄𝑄2 + 𝐴𝐴−𝑍𝑍
𝐴𝐴

𝑓𝑓 ⁄𝑏𝑏 𝐴𝐴
𝑏𝑏 𝑥𝑥𝑏𝑏 , 𝑄𝑄2  

where Bound nucleon PDFs 𝑓𝑓 ⁄𝑝𝑝 𝐴𝐴
𝑏𝑏 𝑥𝑥𝑏𝑏 , 𝑄𝑄2  are connected to free nucleon PDF 

as  (EPPS16, EPJ C77(2017)163): 

𝑓𝑓 ⁄𝑝𝑝 𝐴𝐴
𝑏𝑏 𝑥𝑥𝑏𝑏 , 𝑄𝑄2 = 𝑅𝑅𝐴𝐴

𝑏𝑏 𝑥𝑥𝑏𝑏 , 𝑄𝑄2 𝑓𝑓𝑝𝑝
𝑏𝑏 𝑥𝑥𝑏𝑏 , 𝑄𝑄2

• Nuclear PDF effects are important to account for to properly map 
QGP properties

   → pA collisions
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J E T  A L G O R I T H M S

Important requirements for Jet F inders:

• Simple implementation and reproducibility (theory/experiment)

• Tolerance to fragmentation details and UE

• Collinear- and infrared-safe

Two classes of Jet F inders:

• Cone-Type (Midpoint Cone (Tev), Iterative Cone (CMS),  SISCone (LHC),…)
Not Infrared- & Collinear-Safe (but SISCone)
Usually involve several arbitrary parameters
Computationally fast
Disfavored by theorists

• Sequential Recombination (kT, Anti-kT, Cambridge/Aachen)
Infrared- & Collinear-Safe by construction
Straightforward, though more computationally expensive
Favored by theorists
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J E T  ( H A R D )  S U B S T RU C T U R E  S T U D I E S

•  Grooming:
 Idea: to isolate hard structure (hardest/earliest splitting) from soft BG contamination

• Several Approaches
 Filtering: re-cluster jets with smaller 𝑅𝑅𝑓𝑓𝑖𝑖𝑘𝑘𝑓𝑓 keep hardest subjets
 Trimming: re-cluster with smaller 𝑅𝑅𝑓𝑓𝑟𝑟𝑖𝑖𝑚𝑚, keep subjets with 𝑝𝑝𝑇𝑇 >  𝜀𝜀𝑓𝑓𝑟𝑟𝑖𝑖𝑚𝑚𝑝𝑝𝑇𝑇

𝑖𝑖𝑒𝑒𝑓𝑓

 Pruning: re-cluster with kT or C/A and in each clustering step discard subjet if 
∆𝑅𝑅 > 𝑅𝑅𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 and 

min(𝑝𝑝𝑇𝑇,1 ,𝑝𝑝𝑇𝑇,2)
𝑝𝑝𝑇𝑇,1+𝑝𝑝𝑇𝑇,2

<  𝑧𝑧𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝

• Commonly used: Soft Drop algorithm:
 Start with anti-kT jet, re-cluster with CA

 Undo the last clustering step, get 𝑧𝑧𝑔𝑔 = min(𝑝𝑝𝑇𝑇1 ,𝑝𝑝𝑇𝑇2)
𝑝𝑝𝑇𝑇1+𝑝𝑝𝑇𝑇2

 and ∆𝑅𝑅

 Stop if 𝑧𝑧𝑔𝑔 > 𝑧𝑧𝑐𝑐𝑐𝑐𝑗𝑗( ⁄∆𝑅𝑅
𝑅𝑅)𝛽𝛽 , else un-cluster again
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S U B J E T  M O M E N T U M  S H A R I N G

• Parton splitting is modified in central PbPb collisions

 Higher suppression for jets with more symmetric subjets

 New insights on in-medium effects for theory, different interpretations

 Medium recoil? Modified splitting? Coherent emitter?
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pT,2          pT,1

Small Zg Zg ~ 0.5
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S U B J E T  M O M E N T U M  S H A R I N G

• Parton splitting for charged jets: 

 Enhancement of the number of small-angle splittings/ suppression of the large-
 angle symmetric splittings in central PbPb collisions

 Number of splittings passing soft drop cut shifts down – color-charge effects?
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CMS jet substructure studies by 2021 
(from summary talk by  A. Hinzmann and B. Nachman, CERN-TH workshop)

HIN
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