

π^0 reconstruction in DUNE Far Detector

Vikas Gupta Nikhef FD sim/reco

$\pi^{0'}$ s in DUNE

• π^0 are produced in neutrino interaction via resonant pion

production and decays promptly to two photons

- Important to reconstruct in DUNE
 - Background in v_e appearance (from v_μ NC interaction)
 - Calibration method for EM shower energy

π^0 reconstruction in DUNE

- π^0 are generally difficult to reconstruct
 - Showers have a small opening angle in lab frame (maximum around 0.5 rad (28°))
 - Most γ_2 are produced at very low energy
- This presentation: first look at FD $\pi^{0's}$ using small sample from the new production
 - Preliminary plots

π^0 produced in FD interactions

u_{μ} beam interactions

- 1900 Events : 523 NC interactions and 1377 CC interactions
- If a π^0 has 0 daughters associated in the reconstructed primary daughters, it is not counted here

u_{μ} beam interactions

- 1900 Events : 523 NC interactions and 1377 CC interactions
- If a π^0 has 0 daughters associated in the reconstructed primary daughters, it is not counted here

u_{μ} beam interactions

- 1900 Events : 523 NC interactions and 1377 CC interactions
- If a π^0 has 0 daughters associated in the reconstructed primary daughters, it is not counted here
- About ~2/3 of the π^0 only have one unique shower in reconstructed daughters with Pandora shower

tag

π^0 reconstruction analysis

- Identify EM showers in event primary daughters using Pandora shower tag
 - 1< Number of Pandora showers < 4
- 2. Select two most energetic showers and reconstruct shower pair
- 3. Apply selection cuts to improve purity
 - 1. Opening angle
 - 2. Shower energy
 - 3. Shower pair starting distance
- 4. Shower energy correction

π^0 sample selection (ν_μ beam)

- Events: 1900 (NC : 523, CC: 1377)
- Total π^0 seen: 1424
- Single π^0 events: 543

Selection	Purity	Efficiency
Most energetic shower pair	0.36	1 (153 π ^{0'} s)

π^0 showers energy reconstruction

π^0 sample selection (ν_μ beam)

- Events: 1900 (NC : 523 , CC: 1377)
- Total π^0 seen: 1424
- Single π^0 events: 543

Selection	Purity	Efficiency
Most energetic shower pair	0.36	1 (153 π ^{0′} s)
0.4 < Opening angle < 1.6 rad Shower 1 energy > 40 MeV Shower 2 energy < 160 MeV 10 < Shower pair distance <110 cm	0.58	0.61

- Energy correction factor of 1/0.725 (chosen by eye)
- TBD: Calculating correction factor for showers

π^0 reconstruction in ProtoDUNE-I

11 March 2024

π^{0} reconstruction in ProtoDUNE (2 GeV beam)

•MC gaussian fit (green line):

- Amplitude: 504.02 +/- 11.16 cts
- Centre: 134.50 +/- 1.01 MeV/c²
- Width: 56.27 +/- 0.90 MeV/c²

•Data gaussian fit (black line):

- Amplitude: 1567.26 +/- 19.06 cts
- Centre: 138.2 +/- 0.62 MeV/c²
- Width: 62.03 +/- 0.58 MeV/c²

Energy correction of 1/0.821 for all showers (=1/0.67 for a π^{0})

π^0 reconstruction in ProtoDUNE (1 GeV beam)

•MC gaussian fit (green line):

- Amplitude: 383 +/- 9.93 cts
- Centre: 136.03 +/- 1.08 MeV/c²
- Width: 50.89 +/- 0.87 MeV/c²

•Data gaussian fit (black line):

- Amplitude: 259.51 +/- 8.36 cts
- Centre: 132.02 +/- 1.316 MeV/c²
- Width: 50.38 +/- 1.116 MeV/c²

Energy correction of 1/0.821 for all showers (=1/0.67 for a π^0)

Future steps

- Proper π^0 selection cuts for Far Detector sample
- Look into γ/e^{-} discrimination performance
- Improving event reconstruction in Pandora