String hadronization in PYTHIA8: from e^+e^- to pp and beyond *pp*

- ➢ **Confinement** in High-Energy Collisions
-
- ➢ String **Junctions**
- \triangleright Strings from vacuum \rightarrow small systems \rightarrow heavy ion collisions

Javira Altmann - Monash University, visiting University of Oxford

➢ String **Hadronisation** → Modelling in PYTHIA (QCD Colour Reconnections)

Confinement in high energy collisions

Example of $pp \to t\bar{t}$ event From PYTHIA 8.3 guide arXiv:2201.11601

Consider "hard" processes with large momentum transfers $\mathcal{Q}^2 \gg \Lambda^2_C$ *QCD*

Need a dynamical process to ensure partons **(quarks and gluons)** become **confined** within hadrons

At wavelengths ∼ *rproton* ∼ 1/Λ*QCD*

i.e. non-perturbative **parton → hadron map**

Colour neutralisation

What does this **confinement field** look like?

Require colour neutralisation:

➢ The point of confinement is that partons are **coloured** → a physical model needs two or more partons to create **colour neutral** objects

Colour neutralisation

Require colour neutralisation:

 \triangleright The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more partons to create **colour neutral** objects

Lattice QCD "Cornell potential" $V(r) = -\frac{1}{r} + \kappa r$ with $\kappa \sim 1$ GeV/fm *a r*

shows us the potential energy of a colour singlet $q\bar{q}$ at separation distance *r*

-
- $+$ *kr* with $\kappa \sim 1$
	-

Lund String Model

Lund String Model:

Model the **confining field** between colour charges as a **string**

Collapse the colour field into a **narrow flux tube** (relativistic 1+1 dimensional world sheet) with uniform energy density

 $\kappa \sim 1$ GeV/fm

Example of a **"dipole"** string

Lund String Model:

Model the **confining field** between colour charges as a **string**

Collapse the colour field into a **narrow flux tube** (relativistic 1+1 dimensional world sheet) with uniform energy density

 $\kappa \sim 1$ GeV/fm

- \rightarrow connected via a string to an anticolour charge
- → string **endpoints**

Quarks / antiquarks

(anti)triplet → carry (anti)**colour**

- \rightarrow connected via a string to both a colour and an anticolour charge
- → transverse excitations on the **string ("kinks")**

Gluons

Octet → carry a **colour** and an **anticolour**

Lund String Model

Lund String Model:

Model the **confining field** between colour charges as a **string**

- \rightarrow connected via a string to an anticolour charge
- → string **endpoints**

sheet) with uniform energy density

 $\kappa \sim 1$ GeV/fm

Quarks / antiquarks

(anti)triplet → carry (anti)**colour**

Signatures of gluon-kinks have been seen Factor \sim 2 more particles in gluon jets

Gluons

- Octet → carry a **colour** and an **anticolour**
- \rightarrow connected via a string to both a colour and an anticolour charge
- → transverse excitations on the **string ("kinks")**

Lund String Model

Lund String Model:

Model the **confining field** between colour charges as a **string**

sheet) with uniform energy density

 $\kappa \sim 1$ GeV/fm

Quarks / antiquarks

 $(anti)$ triplet \rightarrow carry $(anti)$ \rightarrow connected via a string

- \rightarrow connected via a string to both a colour and an anticolour charge
- → transverse excitations on the **string ("kinks")**

→ string **endpoints**

Gluons

Octet → carry a **colour** and an **anticolour**

Lund String Model

How does this **map partons onto hadrons** in high-energy collisions?

Partons → Hadrons

Hadronisation:

Partons move apart and stretch the string → **string breaks**

These happen at **non-perturbative** scales, can[']

- ⁺ + E - -

 $+$ \overrightarrow{E} $-$ E

Instead use the **Schwinger mechanism**

Schwinger → Gaussian p_{\perp} spectrum and heavy **purified to the substant suppression of night** $m_1 = \sqrt{m_q + p_1}$ flavour suppression $$

't use
$$
P_{g \rightarrow q\bar{q}}(z)
$$

Schwinger mechanism QED

$$
\mathcal{P} \propto \exp\left(\frac{-m^2 - p_\perp^2}{\kappa/\pi}\right)
$$

Gaussian suppression of high $m_\perp =$

Probability from tunnelling factor

Non-perturbative *creation of* e^+e^- *pairs* in a string electric field

Heavy quarks are only produced from hard processes → must be **string endpoints**

Baryons formed from beam remnants or **diquark-antidiquark** pair creation

5

Partons → Hadrons

Hadronisation:

$$
f(z) \propto \frac{1}{z} (1-z)^a \exp\left(\frac{-b(m_h^2 + p_{\perp h}^2)}{z}\right)
$$

- $Schwinaer \rightarrow Gaussian p$, spectrum and heavy flavour suppression **Prob(u:d:s)** \approx **1 : 1 : 0.2** Schwinger → Gaussian p_{\perp} spectrum and heavy
	- **String breaks are causally disconnected**
		- \rightarrow can fragment off hadrons from either end of the string
			- Probability distribution for the **fraction of quark** momenta, z, the hadron will take is parametrised by the
			- **Lund Symmetric Fragmentation Function**

Free tuneable parameters *a* and *b*

5

Partons → Hadrons

Hadronisation:

 $Schwinaer \rightarrow Gaussian p$, spectrum and heavy flavour suppression **Prob(u:d:s)** \approx **1 : 1 : 0.2** Schwinger → Gaussian p_{\perp} spectrum and heavy

String breaks are causally disconnected

$$
f(z) \propto \frac{1}{z} (1-z)^a \exp\left(\frac{-b(m_h^2 + p_{\perp h}^2)}{z}\right)
$$

 \rightarrow can fragme Probability d So far we have notion of hadron flavour and momentum **momenta,** $\frac{1}{2}$ will also will colour find the second by the hadron will take it parameters in the second by the second **Lund Symmetric Fragmentation Function** momenta, **What about colour?**

Free tuneable parameters *a* and *b*

Leading Colour limit:

Starting point for Monte Carlo event generators $N_C\to\infty$

➢ Each **colour is unique** → only one way to make colour singlets

- ➢ Only **dipole** strings
- ➢ Used by PYTHIA in the default (Monash 2013) tune

In e ⁺ e [−] collisions :

➢ Corrections suppressed by 1/*N*² *^C* ∼ 10 %

➢ Not much overlap in phase space

-
-

Modelling Colour

e.g. a dipole string configuration which make use of the **colour-anticolour** singlet state

Leading Colour limit:

Starting point for Monte Carlo event generators $N_C\to\infty$

➢ Each **colour is unique** → only one way to make colour singlets

- ➢ Only **dipole** strings
- ➢ Used by PYTHIA in the default (Monash 2013) tune

In e ⁺ e [−] collisions :

➢ Corrections suppressed by 1/*N*² *^C* ∼ 10 %

➢ Not much overlap in phase space

Modelling Colour

e.g. a dipole string configuration which make use of the **colour-anticolour** singlet state

But high-energy pp collisions involve **very many** coloured partons with significant **phase space overlaps**

-
-

QCD Colour Reconnection (CR) model

7

Stochastically restores colour-space ambiguities according to **SU(3) algebra** ➢ Allows for reconnections to **minimise string lengths**

Colour - anticolour singlet state

-
-

Stochastically restores colour-space ambiguities according to **SU(3) algebra**

➢ Allows for reconnections to **minimise string lengths**

-
- What about the **red-green-blue** colour singlet state?

QCD Colour Reconnections

11

11

Junction Rest Frame

What is the **junction rest frame?**

If the momenta of the junction legs are at 120° angles \rightarrow the pull in each direction on the junction is equal \rightarrow junction is at rest

Junction Rest Frame

What is the **junction rest frame?**

If the momenta of the junction legs are at 120° angles \rightarrow the pull in each direction on the junction is equal \rightarrow junction is at rest

Does a boost to the mercedes frame always exist?

J. Altmann **Monash University**

Junction Rest Frame

*no special consideration for these cases in current implementation

What is the **junction rest frame?**

If the momenta of the junction legs are at 120° angles \rightarrow the pull in each direction on the junction is equal \rightarrow junction is at rest

Pearl-on-a-string

The **junction gets "stuck"** to the soft quark, which we call a **pearl-on-a-string**

J. Altmann **Monash University**

➢ More likely to occur for junctions with heavy flavour endpoints

14

Pearl-on-a-string

For a junction to make a **heavy baryon**, the junction leg with the heavy quark can't fragment (*i.e.* a "soft" junction leg) **= pearl-on-a-string!**

The **junction gets "stuck"** to the soft quark, which we call a **pearl-on-a-string**

➢ More likely to occur for junctions with heavy flavour endpoints

14

-
- Current procedure assumes the **average is the mercedes frame** ➢ Uses energy weighted sum of momenta on each junction leg \triangleright Relies on convergence procedure that fails ~10% of cases

Updates to averaging

-
-

Use an **"average" JRF**

- \triangleright Considers pull on junction over time and average over junction motion
- ➢ Includes pearl-on-a-string
- ➢ Allow endpoint oscillations
- ➢ No reliance on convergence

 \triangleright Early time JRF defined by the first parton on each leg \triangleright Use smallest leg momentum as a measure of effective time for the JRF \triangleright When softest parton has lost its momentum, the next parton dominates the pull

New treatment:

17

Starting point for Monte Carlo is leading colour $N_C\to\infty$ i.e. unique colour singlet configurations determined by colour tracing in hard processes

CR restores missing colour correlations from $SU(3)$ assuming string "length" minimisation

Dipole-type reconnection: colour-anticolour

Junction-type reconnection: red-green-blue

Aims to **stochastically restore** these colour correlations using *SU*(3) algebra **"string length"** is **not** a spatial

- $3 \otimes \overline{3} = 8 \oplus 1$ (colour-anticolour)
- $3 \otimes 3 = 6 \oplus \overline{3}$ (colour-colour)

measure but measure of approx how many hadrons a string can make e.g. rapidity-type measure or invariant mass of the dipole

-
-
-

Dipole-type reconnection: colour-anticolour

Independently hadronising MPI does not result in **increasing** $\langle p_\perp \rangle$ **with multiplicity**

Junction-type reconnection: red-green-blue

Starting point for Monte Carlo is leading colour $N_C\to\infty$ i.e. unique colour singlet configurations determined by colour tracing in hard processes

CR restores missing colour correlations from $SU(3)$ assuming string "length" minimisation

Aims to **stochastically restore** these colour correlations using *SU*(3) algebra

- $3 \otimes \overline{3} = 8 \oplus 1$ (colour-anticolour)
- $3 \otimes 3 = 6 \oplus \overline{3}$ (colour-colour)

"string length" is **not** a spatial measure but measure of approx how many hadrons a string can make e.g. rapidity-type measure or invariant mass of the dipole

-
-
-

Dipole-type reconnection: colour-anticolour

Independently hadronising MPI does not result in **increasing** $\langle p_\perp \rangle$ **with multiplicity**

Junction-type reconnection: red-green-blue

Starting point for Monte Carlo is leading colour $N_C\to\infty$ i.e. unique colour singlet configurations determined by colour tracing in hard processes

CR restores missing colour correlations from $SU(3)$ assuming string "length" minimisation

Aims to **stochastically restore** these colour correlations using *SU*(3) algebra

- $3 \otimes \overline{3} = 8 \oplus 1$ (colour-anticolour)
- $3 \otimes 3 = 6 \oplus \overline{3}$ (colour-colour)

"string length" is **not** a spatial measure but measure of approx how many hadrons a string can make e.g. rapidity-type measure or invariant mass of the dipole

-
-
-

Junction-type reconnection: red-green-blue

Independently hadronising MPI does not result in **increasing** $\langle p_\perp \rangle$ **with multiplicity** Junctions result in baryons → increase in **baryon-to-meson ratio**

Independently hadronising MPI does not result in **increasing** $\langle p_\perp \rangle$ **with multiplicity** Junctions result in baryons → increase in **baryon-to-meson ratio**

Recent brief review on CR arXiv:2405.19137

Can: baryon-to-meson ratio increase, $\langle p_\perp \rangle$ increase with multiplicity, some flow-like effects

*uses string radius of 0.2 fm for illustration purposes but in reality can be much larger

After the string has had time after its initial creation to expand to its full **transverse size**, strings will start **"shoving"**

e.g. $\sqrt{s} = 7$ TeV collision example

*uses string radius of 0.2 fm for illustration purposes but in reality can be much larger

After the string has had time after its initial creation to expand to its full **transverse size**, strings will start **"shoving"**

CR has already occurred with string minimisation choosing singlet configurations

- \rightarrow only octet states would likely be near one another
- → only **repulsion** left

e.g. $\sqrt{s} = 7$ TeV collision example

ρ is the radius in cylindrical coordinates

R is the equilibrium radius

N is a normalization factor, determined by letting the energy in the field correspond to a **fraction g of the total string tension**.

- Energy per unit length of two strings $(E_1 + E_2)^2$ 2
- Force between two strings transversely separated

en
$$
f(d_{\perp}) = \frac{g \kappa d_{\perp}}{R^2} \exp\left(-\frac{d_{\perp}^2}{4R^2}\right)
$$

culable from the field
$$
E = N \exp(-\rho^2/2R^2)
$$

*uses string radius of 0.2 fm for illustration purposes but in reality can be much larger

- After the string has had time after its initial creation to expand to its full **transverse size**, strings will start **"shoving"**
	-

CR has already occurred with string minimisation choosing singlet configurations

- \rightarrow only octet states would likely be near one another
- → only **repulsion** left

Force cald

overlapping $d^2ρ$

 $\log d_1$ is the

e.g. $\sqrt{s} = 7$ TeV collision example

- ➢ Use parallel dogbone frame
- ρ Ordered in p_1 in similar spirit to parton shower ordering

Monte Carlo implementation details

ρ is the radius in cylindrical coordinates

R is the equilibrium radius

N is a normalization factor, determined by letting the energy in the field correspond to a **fraction g of the total string tension**.

- Energy per unit length of two strings $(E_1 + E_2)^2$ 2
- Force between two strings transversely separated

en
$$
f(d_{\perp}) = \frac{g\kappa d_{\perp}}{R^2} \exp\left(-\frac{d_{\perp}^2}{4R^2}\right)
$$

culable from the field
$$
E = N \exp(-\rho^2/2R^2)
$$

*uses string radius of 0.2 fm for illustration purposes but in reality can be much larger

F *Force* calc

overlapping $d^2ρ$

 $\log d_1$ is the

- After the string has had time after its initial creation to expand to its full **transverse size**, strings will start **"shoving"**
	-

CR has already occurred with string minimisation choosing singlet configurations

- \rightarrow only octet states would likely be near one another
- → only **repulsion** left

e.g. $\sqrt{s} = 7$ TeV collision example

Requires space-time picture of strings

Shoving in pp

After the string has had time after its initial creation to expand to its full **transverse size**, strings will start **"shoving"**

CR has already occurred with string minimisation choosing singlet configurations

- \rightarrow only octet states would likely be near one another
- → only **repulsion** left

*results from old implementation of shoving w.r.t to the beam axis rather than the dog-bone implementation

First look at **toy case**

- \triangleright Multiplicity generated by a single string well known (approx one hadron per unit of rapidity)
- centrality interval

➢ System of **straight strings (no gluon kinks)** that corresponds to the multiplicity of AA collisions in a given

Not perfect agreement however is only a toy model and uses **same parameters as pp collision systems**

Correlation between initial state ϵ_2 and final state v_2 is linear in hydrodynamic deconfined QGP phase - **similarly with shoving** → **hydrodynamic behaviour is not limited to deconfined systems**

source of flow can be the same across collision systems!!!

20 15

10

8

Full **Pb-Pb collision in Angantyr**

Many **soft gluons** → **short interaction time** for shoving mechanism as the mechanism does not consider the region formed from soft gluons \rightarrow insufficient level of shoving q

 \triangleright Trend is in the correct direction but insufficient, also lacks curved shape

➢ Implementation issues

Shoving in AA

- **q**
-

Strange production in the string picture

Strangeness Enhancement

Schwinger mechanism QED

Non-perturbative *creation of* e^+e^- *pairs* n a string electric field

Probability from unnelling factor

$$
\mathscr{P} \propto \exp\left(\frac{-m^2 - p_\perp^2}{\kappa/\pi}\right)
$$

Strange production in the string picture

κ = string tension

- ⁺

+ E - -

E

Schwinger mechanism QED

 $+$ \overrightarrow{E} $-$

$$
\mathcal{P} \propto \exp\left(\frac{-m^2 - p_\perp^2}{\kappa/\pi}\right)
$$

Probability from tunnelling factor

Non-perturbative *creation of* e^+e^- *pairs* in a string electric field

Use **Schwinger mechanism** to model **tunnelling of quark-antiquark pairs** created by string breaks

Schwinger → Gaussian $p_$ _⊥ spectrum and heavy flavour suppression $$

Heavy quarks (charm and bottom) are only produced from hard processes → must be **string endpoints**

Strange production in the string picture

κ = string tension

Rope hadronisation arXiv:1412.6259

-
-

 $N/N(\pi^+\pi^-)$ vs. $\langle dN_{ch}/d\eta \rangle$ for p-p 7 TeV, p-Pb 5.02 TeV and Pb-Pb 2.76 TeV

J. Altmann **Monash University** 11

Rope hadronisation

arXiv:1412.6259

 \rightarrow not in conjunction with shoving

-
-

22

-
-

J. Altmann \approx Monash University 13

def-Pythia8/Angantyr $--$ p-p/RH, $R=0.5$ fm p-p data p-Pb data Pb-Pb data $-2 \times 2K_s^0$ $-3 \times (\Xi^{-} + \Xi^{+})$ \rightarrow 8 \times $(\Omega^- + \Omega^+)$

Proton problem

Diquark formation via **successive colour fluctuations** — popcorn mechanism

Popcorn mechanism for diquark production

Proton problem

What if there's a blue string nearby?

blue $q\bar{q}$ fluctuation breaks nearby blue string, preventing diquark formation

Diquark formation via **successive colour fluctuations** — popcorn mechanism

Popcorn mechanism for diquark production

*<u><i>***£** $\frac{1}{2}$ **a**_{**k**} **d d 36-x01-y01:**</u>

q¯1

Results — ongoing

tuning project with the model masters student currently undertaking

Cannot describe both baryon-to-meson ratios simultaneously

Summary

 \rightarrow near-sided ridge in pp , some v_2 with full description hindered by implementation technicality issues

Evidence that **collective effects can arise from non-QGP** sources

- **CR** restores $SU(3)$ colour correlations
- → baryons-to-meson ratio enhancement, $\langle p_{\perp}\rangle$ increase with multiplicity, some flow-like Angantyr allows for pA and AA using strings instead of QGP

Ropes

 \rightarrow strangeness enhancement

Unmentioned: jet quenching, hadron rescattering

→ multiplicity distributions for *AA*

Shoving string interactions before hadronisation

Future studies: shoving **considering regions formed by soft gluons**, reexamination of results given **updates to CR in Angantyr** (previous modelling only included CR within each nucleon-nucleon collision, now CR is allowed between nucleon-nucleon collisions)

Protons are composite

- \rightarrow lots of quarks and gluons inside
- \rightarrow multiple parton-parton interactions
- \rightarrow lots of colour charges

Strangeness enhancement with charged multiplicity suggests **higher multiplicity** string systems act **different to the vacuum case**

Clear observations of strangeness enhancement with respect to charged multiplicity [e.g. ALICE Nature Pays. 13, 535 (2017)]

$Vacuum \rightarrow High$ multiplicities

Number of fundamental and antifundamental flux lines at central rapidity in *pp* collisions give us **effective multiplet representation**

Reach higher than simple quarkantiquark triplet string

Popcorn Mechanism

Diquark formation via **successive colour fluctuations**

Popcorn Mechanism

Diquark formation via **successive colour fluctuations**

blue $q\bar{q}$ fluctuation on the string

Popcorn Mechanism

Diquark formation via **successive colour fluctuations**

Popcorn Mechanism

Diquark formation via **successive colour fluctuations**

What if there's a blue string nearby?

Popcorn Mechanism

Diquark formation via **successive colour fluctuations**

What if there's a blue string nearby?

arXiv:hep-ph/9606454

Only basic model implemented thus far, further improvements on the modelling still happening!

J. Altmann **Monash University**

Angantyr uses PYTHIA as its base to do pA and AA collisions, using only strings (**no QGP** formation)

Collective effects of strings can describe features that are typically described as signature of QGP

- \triangleright Near-sided ridge \rightarrow string shoving
- $\rho_2 \rightarrow$ string repulsion?
- ➢ Strangeness enhancement → ropes/close-packing

Vacuum \rightarrow Small Systems \rightarrow Heavy Ion

String model has well described e^+e^- systems (i.e. cases with not many strings), and we've explored **high multiplicity small systems**, but what about **heavy ion systems?**

Do we still have strings? Do we have QGP? Is it a mix of both, or is there a smooth transition between the strings and QGP?

> How far can we push the string model?

Thank you for listening!

