String hadronization in PYTHIA8: from e^+e^- to pp and beyond

Javira Altmann - Monash University, visiting University of Oxford

- Confinement in High-Energy Collisions
- > String Junctions
- \succ Strings from vacuum \rightarrow small systems \rightarrow heavy ion collisions

> String Hadronisation \rightarrow Modelling in PYTHIA (QCD Colour Reconnections)

Confinement in high energy collisions

Consider "hard" processes with large momentum transfers $Q^2 \gg \Lambda^2_{OCD}$

At wavelengths ~ $r_{proton} \sim 1/\Lambda_{QCD}$

Need a dynamical process to ensure partons (quarks and gluons) become confined within hadrons

i.e. non-perturbative parton → hadron map

> Example of $pp \rightarrow t\bar{t}$ event From PYTHIA 8.3 guide arXiv:2201.11601

Colour neutralisation

Require colour neutralisation:

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more partons to create **colour neutral** objects

What does this **confinement field** look like?

Colour neutralisation

Require colour neutralisation:

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more partons to create **colour neutral** objects

Lattice QCD "Cornell potential" $V(r) = -\frac{a}{-} + \kappa r$ with $\kappa \sim 1$ GeV/fm

shows us the potential energy of a colour singlet $q\bar{q}$ at separation distance r

Lund String Model:

Model the **confining field** between colour charges as a **string**

Collapse the colour field into a **narrow flux tube** (relativistic 1+1 dimensional world) sheet) with uniform energy density

 $\kappa \sim 1 \text{ GeV/fm}$

Example of a "dipole" string

Lund String Model:

Model the **confining field** between colour charges as a **string**

Collapse the colour field into a **narrow flux tube** (relativistic 1+1 dimensional world) sheet) with uniform energy density

 $\kappa \sim 1 \text{ GeV/fm}$

Quarks / antiquarks

(anti)triplet \rightarrow carry (anti)**colour**

- \rightarrow connected via a string to an anticolour charge
- → string endpoints

Gluons

- Octet \rightarrow carry a **colour** and an **anticolour**
- \rightarrow connected via a string to both a colour and an anticolour charge
- \rightarrow transverse excitations on the string ("kinks")

Lund String Model:

Model the **confining field** between colour charges as a **string**

Collapse the colour field into a **narrow flux tube** sheet) with uniform energy density

 $\kappa \sim 1 \text{ GeV/fm}$

Quarks / antiquarks

(anti)triplet \rightarrow carry (anti)**colour**

- \rightarrow connected via a string to an anticolour charge
- → string endpoints

Gluons

- Octet \rightarrow carry a **colour** and an **anticolour**
- \rightarrow connected via a string to both a colour and an anticolour charge
- → transverse excitations on the string ("kinks")

Signatures of gluon-kinks have been seen Factor ~ 2 more particles in gluon jets

Lund String Model:

Model the **confining field** between colour charges as a **string**

Collapse the colour field into a **narrow flux tube** sheet) with uniform energy density

 $\kappa \sim 1 \text{ GeV/fm}$

Quarks / antiquarks

(anti)triplet \rightarrow carry (ant → connected via a strin

→ string endpoints

Gluons

Octet \rightarrow carry a **colour** and an **anticolour**

- \rightarrow connected via a string to both a colour and an anticolour charge
- → transverse excitations on the string ("kinks")

How does this map partons onto hadrons in high-energy collisions?

Partons \rightarrow Hadrons

Hadronisation:

Partons move apart and stretch the string \rightarrow string breaks

These happen at **non-perturbative** scales, can'

Instead use the **Schwinger mechanism**

Schwinger \rightarrow **Gaussian** p_{\perp} **spectrum** and heavy flavour suppression **Prob(u:d:s)** \approx **1 : 1 : 0.2**

> Heavy quarks are only produced from hard processes → must be **string endpoints**

't use
$$P_{g \to q\bar{q}}(z)$$

Schwinger mechanism QED

Non-perturbative creation of e^+e^- pairs in a string electric field

Probability from tunnelling factor

$$\mathscr{P} \propto \exp\left(\frac{-m^2 - p_{\perp}^2}{\kappa/\pi}\right)$$

Gaussian suppression of high m_{\perp} =

Baryons formed from beam remnants or diquark-antidiquark pair creation

Partons \rightarrow Hadrons

Hadronisation:

- **Schwinger** \rightarrow **Gaussian** p_{\perp} **spectrum** and heavy flavour suppression **Prob(u:d:s)** \approx **1 : 1 : 0.2**
- String breaks are **causally disconnected**
- \rightarrow can fragment off hadrons from either end of the string
 - Probability distribution for the **fraction of quark**
 - **momenta**, z, the hadron will take is parametrised by the

Lund Symmetric Fragmentation Function

$$f(z) \propto \frac{1}{z} (1-z)^a \exp\left(\frac{-b(m_h^2 + p_{\perp h}^2)}{z}\right)$$

Free tuneable parameters *a* and *b*

J. Altmann 🦝 Monash University

Partons \rightarrow Hadrons

Hadronisation:

Schwinger \rightarrow **Gaussian** p_{\perp} **spectrum** and heavy flavour suppression **Prob(u:d:s)** \approx **1 : 1 : 0.2**

String breaks are **causally disconnected**

→ can fragme Probability d What about colour? momenta, 2 Lund Symmetric rragmentation runction

$$f(z) \propto \frac{1}{z} (1-z)^a \exp\left(\frac{-b(m_h^2 + p_{\perp h}^2)}{z}\right)$$

Free tuneable parameters *a* and *b*

Modelling Colour

Leading Colour limit:

Starting point for Monte Carlo event generators $N_C \rightarrow \infty$

 \succ Each colour is unique \rightarrow only one way to make colour singlets

- > Only **dipole** strings
- > Used by PYTHIA in the default (Monash 2013) tune

In e^+e^- collisions :

> Corrections suppressed by $1/N_C^2 \sim 10\%$

> Not much overlap in phase space

e.g. a dipole string configuration which make use of the **colour-anticolour** singlet state

Modelling Colour

Leading Colour limit:

Starting point for Monte Carlo event generators $N_C \rightarrow \infty$

 \succ Each colour is unique \rightarrow only one way to make colour singlets

- > Only **dipole** strings
- > Used by PYTHIA in the default (Monash 2013) tune

In e^+e^- collisions :

> Corrections suppressed by $1/N_C^2 \sim 10\%$

> Not much overlap in phase space

But high-energy pp collisions involve very many coloured partons with significant phase space overlaps

e.g. a dipole string configuration which make use of the **colour-anticolour** singlet state

QCD Colour Reconnection (CR) model

Stochastically restores colour-space ambiguities according to **SU(3) algebra**

> Allows for reconnections to **minimise string lengths**

Colour - anticolour singlet state

Stochastically restores colour-space ambiguities according to **SU(3) algebra**

> Allows for reconnections to **minimise string lengths**

- What about the **red-green-blue** colour singlet state?

;TI	0	N.	S
;	O	N	5

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles \rightarrow the pull in each direction on the junction is equal \rightarrow junction is at rest

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles \rightarrow the pull in each direction on the junction is equal \rightarrow junction is at rest

Does a boost to the mercedes frame always exist?

J. Altmann 🌄 Monash University

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles \rightarrow the pull in each direction on the junction is equal \rightarrow junction is at rest

*no special consideration for these cases in current implementation

Pearl-on-a-string

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string

> More likely to occur for junctions with heavy flavour endpoints

Pearl-on-a-string

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string

> More likely to occur for junctions with heavy flavour endpoints

For a junction to make a **heavy baryon**, the junction leg with the heavy quark can't fragment (*i.e.* a "soft" junction leg) = pearl-on-a-string!

Use an "average" JRF

- Current procedure assumes the **average is the mercedes frame** > Uses energy weighted sum of momenta on each junction leg
- > Relies on convergence procedure that fails ~10% of cases

New treatment:

- \succ Considers pull on junction over time and average over junction motion
- > Includes pearl-on-a-string
- > Allow endpoint oscillations
- > No reliance on convergence

 \succ Early time JRF defined by the first parton on each leg > Use smallest leg momentum as a measure of effective time for the JRF \gg When softest parton has lost its momentum, the next parton dominates the pull

Updates to averaging

J. Altmann 🐼 Monash University

Starting point for Monte Carlo is leading colour $N_C \to \infty$ i.e. unique colour singlet configurations determined by colour tracing in hard processes

CR restores missing colour correlations from SU(3) assuming string "length" minimisation

Aims to stochastically restore these colour correlations using SU(3) algebra

- $3 \otimes \overline{3} = 8 \oplus 1$ (colour-anticolour)
- $3 \otimes 3 = 6 \oplus \overline{3}$ (colour-colour)

Dipole-type reconnection: colour-anticolour

Recent brief review on CR arXiv:2405.19137

"string length" is not a spatial measure but measure of approx how many hadrons a string can make e.g. rapidity-type measure or invariant mass of the dipole

Starting point for Monte Carlo is leading colour $N_C \rightarrow \infty$ i.e. unique colour singlet configurations determined by colour tracing in hard processes

CR restores missing colour correlations from SU(3) assuming string "length" minimisation

Aims to stochastically restore these colour correlations using SU(3) algebra

- $3 \otimes \overline{3} = 8 \oplus 1$ (colour-anticolour)
- $3 \otimes 3 = 6 \oplus \overline{3}$ (colour-colour)

Dipole-type reconnection: colour-anticolour

Independently hadronising MPI does not result in increasing $\langle p_{\perp} \rangle$ with multiplicity

Recent brief review on CR arXiv:2405.19137

"string length" is not a spatial measure but measure of approx how many hadrons a string can make e.g. rapidity-type measure or invariant mass of the dipole

Starting point for Monte Carlo is leading colour $N_C \rightarrow \infty$ i.e. unique colour singlet configurations determined by colour tracing in hard processes

CR restores missing colour correlations from SU(3) assuming string "length" minimisation

Aims to stochastically restore these colour correlations using SU(3) algebra

- $3 \otimes \overline{3} = 8 \oplus 1$ (colour-anticolour)
- $3 \otimes 3 = 6 \oplus \overline{3}$ (colour-colour)

Dipole-type reconnection: colour-anticolour

Independently hadronising MPI does not result in increasing $\langle p_{\perp} \rangle$ with multiplicity

Recent brief review on CR arXiv:2405.19137

"string length" is not a spatial measure but measure of approx how many hadrons a string can make e.g. rapidity-type measure or invariant mass of the dipole

Independently hadronising MPI does not result in increasing $\langle p_{\perp} \rangle$ with multiplicity Junctions result in baryons \rightarrow increase in **baryon-to-meson ratio**

Recent brief review on CR arXiv:2405.19137

Independently hadronising MPI does not result in increasing $\langle p_{\perp} \rangle$ with multiplicity Junctions result in baryons \rightarrow increase in **baryon-to-meson ratio**

Recent brief review on CR arXiv:2405.19137

baryon-to-meson ratio increase, $\langle p_{\perp} \rangle$ increase with multiplicity, some flow-like effects

After the string has had time after its initial creation to expand to its full transverse size, strings will start "shoving"

s = 7 TeV collision example e.g. $\sqrt{}$

*uses string radius of 0.2 fm for illustration purposes but in reality can be much larger

Shoving

After the string has had time after its initial creation to expand to its full transverse size, strings will start "shoving"

CR has already occurred with string minimisation choosing singlet configurations

- \rightarrow only octet states would likely be near one another
- → only **repulsion** left

s = 7 TeV collision example e.g. $\sqrt{}$

*uses string radius of 0.2 fm for illustration purposes but in reality can be much larger

Shoving

CR has already occurred with string minimisation choosing singlet configurations

- \rightarrow only octet states would likely be near one another
- → only **repulsion** left

Force cal

by d_{\parallel} is the

e.g. $\sqrt{s} = 7$ TeV collision example

*uses string radius of 0.2 fm for illustration purposes but in reality can be much larger

Shoving

- After the string has had time after its initial creation to expand to its full transverse size, strings will start "shoving"

culable from the field
$$E = N \exp(-\rho^2/2R^2)$$

- Energy per unit length of two strings overlapping $\int d^2 \rho \frac{(E_1 + E_2)^2}{2}$
- Force between two strings transversely separated

$$\operatorname{en} f(d_{\perp}) = \frac{g\kappa d_{\perp}}{R^2} \exp\left(-\frac{d_{\perp}^2}{4R^2}\right)$$

p is the radius in cylindrical coordinates

R is the equilibrium radius

N is a normalization factor, determined by letting the energy in the field correspond to a **fraction g** of the total string tension.

CR has already occurred with string minimisation choosing singlet configurations

- \rightarrow only octet states would likely be near one another
- → only **repulsion** left

e.g. $\sqrt{s} = 7$ TeV collision example

*uses string radius of 0.2 fm for illustration purposes but in reality can be much larger

Force cale

by d_{\parallel} is the

- > Use parallel dogbone frame
- \succ Ordered in p_{\perp} in similar spirit to parton shower ordering

Shoving

- After the string has had time after its initial creation to expand to its full transverse size, strings will start "shoving"

culable from the field
$$E = N \exp(-\rho^2/2R^2)$$

- Energy per unit length of two strings overlapping $\int d^2 \rho \frac{(E_1 + E_2)^2}{2}$
- Force between two strings transversely separated

$$\operatorname{en} f(d_{\perp}) = \frac{g\kappa d_{\perp}}{R^2} \exp\left(-\frac{d_{\perp}^2}{4R^2}\right)$$

p is the radius in cylindrical coordinates

R is the equilibrium radius

N is a normalization factor, determined by letting the energy in the field correspond to a **fraction g** of the total string tension.

Monte Carlo implementation details

Requires space-time picture of strings

Shoving in pp

After the string has had time after its initial creation to expand to its full transverse size, strings will start "shoving"

CR has already occurred with string minimisation choosing singlet configurations

- \rightarrow only octet states would likely be near one another
- → only **repulsion** left

First look at **toy case**

- \gg Multiplicity generated by a single string well known (approx one hadron per unit of rapidity)
- centrality interval

Not perfect agreement however is only a toy model and uses same parameters as pp collision systems

source of flow can be the same across collision systems!!!

 \gg System of straight strings (no gluon kinks) that corresponds to the multiplicity of AA collisions in a given

Correlation between initial state ϵ_2 and final state v_2 is linear in hydrodynamic deconfined QGP phase - similarly with shoving → hydrodynamic behaviour is not limited to deconfined systems

20 15

Shoving in AA

Full **Pb-Pb collision in Angantyr**

> Implementation issues

Many **soft gluons** → **short interaction time** for shoving mechanism as the mechanism does not consider the region formed from soft gluons \rightarrow insufficient level of shoving

> Trend is in the correct direction but insufficient, also lacks curved shape

Use Schwinger mechanism to model tunnelling of quark-antiquark pairs created by string breaks

Strange production in the string picture

Strange production in the string picture

Use Schwinger mechanism to model tunnelling of quark-antiquark pairs created by string breaks

Schwinger mechanism QED

+	Ē	-
Ŧ		-

Non-perturbative creation of e^+e^- pairs in a string electric field

Probability from tunnelling factor

$$\mathscr{P} \propto \exp\left(\frac{-m^2 - p_{\perp}^2}{\kappa/\pi}\right)$$

 κ = string tension

Strange production in the string picture

Use **Schwinger mechanism** to model tunnelling of quark-antiquark pairs created by string breaks

Schwinger \rightarrow Gaussian p_{\perp} spectrum and heavy flavour suppression **Prob(u:d:s)** \approx **1 : 1 : 0.2**

Schwinger mechanism QED

Non-perturbative creation of e^+e^- pairs in a string electric field

Probability from tunnelling factor

$$\mathscr{P} \propto \exp\left(\frac{-m^2 - p_{\perp}^2}{\kappa/\pi}\right)$$

 $\kappa = \text{string tension}$

Heavy quarks (charm and bottom) are only produced from hard processes \rightarrow must be string endpoints

Rope hadronisation

arXiv:1412.6259

Rope hadronisation

arXiv:1412.6259

 \rightarrow not in conjunction with shoving

J. Altmann 🌄 Monash University

Proton problem

Popcorn mechanism for diquark production

Diquark formation via successive colour fluctuations — popcorn mechanism

Proton problem

Popcorn mechanism for diquark production

Diquark formation via successive colour fluctuations — popcorn mechanism

What if there's a blue string nearby?

blue $q\bar{q}$ fluctuation breaks nearby blue string, preventing diquark formation

Results — ongoing

Cannot describe both baryon-to-meson ratios simultaneously

Taken from slide by Lorenzo Bernadinis: masters student currently undertaking tuning project with the model

Evidence that collective effects can arise from non-QGP sources

- **CR** restores SU(3) colour correlations
- \rightarrow baryons-to-meson ratio enhancement, $\langle p_{\perp} \rangle$ increase with multiplicity, some flow-like Angantyr allows for *pA* and *AA* using strings instead of QGP

 \rightarrow multiplicity distributions for AA

Shoving string interactions before hadronisation

Ropes

 \rightarrow strangeness enhancement

Unmentioned: jet quenching, hadron rescattering

Future studies: shoving considering regions formed by soft gluons, reexamination of results given updates to CR in Angantyr (previous modelling only included CR within each nucleon-nucleon collision, now CR is allowed between nucleon-nucleon collisions)

Summary

 \rightarrow near-sided ridge in pp, some v_2 with full description hindered by implementation technicality issues

Clear observations of strangeness enhancement with respect to charged multiplicity [e.g. ALICE Nature Pays. 13, 535 (2017)]

Vacuum \rightarrow High multiplicities

Protons are composite

- \rightarrow lots of quarks and gluons inside
- → multiple parton-parton interactions
- \rightarrow lots of colour charges

Strangeness enhancement with charged multiplicity suggests higher multiplicity string systems act different to the vacuum case

> Number of fundamental and antifundamental flux lines at central rapidity in *pp* collisions give us **effective** multiplet representation

Reach higher than simple quarkantiquark triplet string

Popcorn Mechanism

arXiv:hep-ph/9606454

Diquark formation via successive colour fluctuations

Popcorn Mechanism

arXiv:hep-ph/9606454

Diquark formation via successive colour fluctuations

blue $q\bar{q}$ fluctuation on the string

Popcorn Mechanism

arXiv:hep-ph/9606454

Diquark formation via successive colour fluctuations

Popcorn Mechanism

arXiv:hep-ph/9606454

Diquark formation via successive colour fluctuations

What if there's a blue string nearby?

J. Altmann 🤯 Monash University

Popcorn Mechanism

arXiv:hep-ph/9606454

Diquark formation via **successive colour fluctuations**

What if there's a blue string nearby?

Only basic model implemented thus far, further improvements on the modelling still happening!

Vacuum \rightarrow Small Systems \rightarrow Heavy Ion

String model has well described e^+e^- systems (i.e. cases with not many strings), and we've explored high multiplicity small systems, but what about heavy ion systems?

> Do we still have strings? Do we have QGP? Is it a mix of both, or is there a smooth transition between the strings and QGP?

Angantyr uses PYTHIA as its base to do pA and AA collisions, using only strings (**no QGP** formation)

Collective effects of strings can describe features that are typically described as signature of QGP

- \succ Near-sided ridge \rightarrow string shoving
- $\gg v_2 \rightarrow \text{string repulsion}?$
- Strangeness enhancement → ropes/close-packing

How far can we push the string model?

Thank you for listening!

