Continuing MVA Studies with ν STORM

Ryan Bayes

University of Glasgow

February 1, 2013

3

Overview

3 Addition of New Variables to Analysis

Continuing TMVA Studies for $\nu {\rm STORM}$

Successful Avenues

- Changes introduced by Tapasi Ghosh
 - Simple re-organization of the MINDplotter code.
 - Needed some re-adjustment of the analysis but this is conditional now.
- Re-ran trees with apparent problems in energy correction.
- Corrected persistent bug in analysis code.
 - Made the apparent yield 150% larger.
 - Did not affect final sensitivity

Not so successful things

- Adding variables for shower discrimination does not help.
 - Tried mean number of hits per track
 - Tried Q_t .
 - Made the final results worse.

A D A D A D A

Current Status of SuperBIND

Two figures of merit

- Efficiency curves
 - Increase in the energy threshold.
 - A plateau in efficiency for MVA.
- 2 Sensitivity contours
 - Clear separation of BDT from LOI and other methods.
 - 10σ coverage of important phase space with BDT
 - Background rejection is paramount for this analysis.

Background Rejection for Three Methods

$\bar{\nu}_{\mu}$ NC Background

 $\bar{\nu}_{\mu}$ CC Background

Observations

- BDT background is always less than 10⁻⁴.
- MLP (neural network) is better than KNN method.
- $\nu_e CC$ and $\bar{\nu}_\mu NC$ go as E(?).
- $\bar{\nu}_{\mu}$ CC is roughly flat.

Adding Q_t variable

- $Q_t = p_\mu sin^2 \theta_{\mu,h}$ added to analysis.
- Shows some potential as a separation variable.
- Also tried mean hits per plane but did not show clear separation.

Correlations of new variable set

Correlation Matrix (background)

• No variables are redundant (no 100% correlations).

3

Sensitivities with and without Q_t

- Better coverage with prior analysis than analysis with Q_t .
- Coverage still more than sufficient to achieve goals.
- Q_t may give better results if it replaces R_p variable.
- As is adds nothing to analysis.

Sensitivity to Systematics

- Increased signal systematic error to 5% from 1%
- Increased background systematic error to 20% from 10%

- Results are robust to changes in the systematics.
- 5% systematic error is larger than the expected uncertainty.

Conclusions

- Some small changes have been made to the reconstruction.
 - A correction to energy loss may have affected the MVA.
 - Primarily affected vSTORM simulation.
- Updated status of analysis
 - Efficiency of MVA methods smaller but still improved over cuts analysis
 - Background of MVA methods smaller for BDT, but larger for KNN.
- Attempted addition of new parameters in analysis
 - Considered mean number of hits per plane and $Q_t = p_\mu \sin^2 \theta_{\mu,h}$.
 - ★ Mean hits per plane detrimental to analysis.
 - ★ Q_t does not improve physics results.
- Rudimentary exploration of systematics.
 - Increase of normalization systematics by factor of 5
 - Minimal impact on ability to resolve LSND anomaly.