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Overview

@ Summary Recent Progress
© Update to Current Status
© Addition of New Variables to Analysis

@ Systematics
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Continuing TMVA Studies for YSTORM

Successful Avenues
@ Changes introduced by Tapasi Ghosh
Simple re-organization of the MINDplotter code.
Needed some re-adjustment of the analysis but this is conditional now.
@ Re-ran trees with apparent problems in energy correction.
@ Corrected persistent bug in analysis code.

Made the apparent yield 150% larger.
Did not affect final sensitivity

Not so successful things

@ Adding variables for shower discrimination does not help.

Tried mean number of hits per track
Tried Q:.
Made the final results worse.
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Current Status of SuperBIND

Two figures of merit
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Background Rejection for Three Methods
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Adding Q; variable

Input variable: Track Quality Input variable: Hits in Trajectory Input variable: Rp
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o Q: = pysin®0,, , added to analysis.
@ Shows some potential as a separation variable.

@ Also tried mean hits per plane but did not show clear separation.
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Correlations of new variable set
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@ No variables are redundant (no 100% correlations).
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Sensitivities with and without Q;

Without Q; Variable in Analysis
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@ Better coverage with prior analysis than analysis with Q;.

@ Coverage still more than sufficient to achieve goals.

e Q: may give better results if it replaces R, variable.

@ As is adds nothing to analysis.
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Sensitivity to Systematics
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@ Increased signal
systematic error to 5%

from 1%

@ Increased background
systematic error to 20%
from 10%

@ Results are robust to changes in the systematics.
@ 5% systematic error is larger than the expected uncertainty.
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Conclusions

@ Some small changes have been made to the reconstruction.

» A correction to energy loss may have affected the MVA.
» Primarily affected ¥STORM simulation.

@ Updated status of analysis

» Efficiency of MVA methods smaller but still improved over cuts analysis
» Background of MVA methods smaller for BDT, but larger for KNN.

@ Attempted addition of new parameters in analysis

» Considered mean number of hits per plane and Q; = p, sin? 0,.h.

* Mean hits per plane detrimental to analysis.
* @Q: does not improve physics results.

@ Rudimentary exploration of systematics.

> Increase of normalization systematics by factor of 5
» Minimal impact on ability to resolve LSND anomaly.
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