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Prologue

Cosmic Accelerators

Man-made Accelerators

New physics, understanding the fundamentals,….

Tevatron

LHC

We are here!! :)

Extreme astrophysical phenomena

Image credits: Wikipedia 
Science Comm., DESY, Zeuthen
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The multi-messenger paradigm

Compact object 
mergers, TDEs, 

CCSNe,….

Image credits: https://nbi.ku.dk/english/research/experimental-particle-physics/icecube/astroparticle-physics/
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The high-energy multi-messenger transients

Extreme astrophysical 
phenomena



6

GW170817

GW 
(Adv. LIGO+Virgo)

Gamma rays  
(Fermi+Integral)

Optical 
(HST)

X-rays 
(Chandra)

No neutrinos :(

~ 40 Mpc (NGC 4993)

Image credits: https://ahead.iaps.inaf.it
Abbott et al. 2017, ApJ 848, L13
Troja, Piro, van Earthen et al., 2017, Nature, 551, 71

https://ahead.iaps.inaf.it/?page_id=1437&print=print
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The multi-messenger paradigm

Compact object 
mergers, TDEs, 

CCSNe,….

Image credits: https://nbi.ku.dk/english/research/experimental-particle-physics/icecube/astroparticle-physics/

High-energy 
neutrinos
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High-energy neutrino detectors

Image credits: icecube.wisc.edu
KM3NeT: Edward Berber, Nikhef

Effective area ∼ 1 km3

KM3NeT

ANTARESBaikal GVD

Future detectors: IceCube-Gen2, 
RNO-G, GRAND,….

http://icecube.wisc.edu
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NGC 1068 (also TXS 0506+056)

 
excess events

∼ 79+22
−20

 w.r.t 
110 known 
gamma ray 

sources

∼ 4.2σ

10 years of PS 
data 

(2011-2020)

IceCube Collab.+ Science 2022
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The Galactic plane

10 years of PS data 
(2011-2020)

 diffuse emission models 
w.r.t background only hypothesis
∼ 4.5σ

IceCube Collab.+ Science, 380, 2023
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High-energy neutrinos

Conditions for HE-  production: 

a) Acceleration of ions (p and nuclei) to sufficiently high 
energies - Shocks, magnetic reconnection, stochastic 
acceleration aided by turbulence


b) Rate of acceleration > Rate of energy loss

c) Significant density on target media - matter and 

radiation

d) (a) and (b) -> production of charged mesons - pions 

that decay into neutrinos, charged leptons, and 
gamma-rays 

ν

p + p → Nπ + X p + γ → Nπ + X

π± → νμ + ν̄μ + νe(or ν̄e) + e±

π0 → γ + γ

t−1
pp = nNκppσppc

t−1
pγ (ϵp) =

c
2γ2

p ∫
∞

ϵ̄th

dϵ̄κpγ(ϵ̄)σpγ(ϵ̄)ϵ̄∫
∞

ϵ̄/2γp

dϵϵ−2nϵ

Proton energy loss due to p-p interactions

Proton energy loss due to p-p interactions

Nucleon density

Proton inelasticity

p-p cross-section

Proton energy

Photon energy in 
proton rest frame

p-  cross-sectionγ
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The high-energy multi-messenger transients

Extreme astrophysical 
phenomena
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Outline

Part 1: Can choked delayed jets explain the neutrino coincidences associated with 
TDEs?


Based on: Multi-messenger signatures of delayed choked jets in tidal disruption events

MM, M. Bhattacharya, K. Murase

(submitted to MNRAS) (arXiv: 2309.02275). 

Part 2: Hunting for neutrinos from BNS mergers at next-generation GW and neutrino 
detectors


Based on: Gravitational wave triggered high energy neutrino searches from BNS mergers: prospects for 
next generation detectors

MM, S. S. Kimura, K. Murase

Phys. Rev. D 109, 4, 043053 (2024) (arXiv: 2310.16875) 

Part 3: Constraints from non-detection of neutrinos from the BOAT - GRB 221009A


Based on: Neutrinos from the Brightest Gamma-Ray Burst?

K. Murase, MM, A. Kheirandish, S. S. Kimura, K. Fang

ApJ Letters 941 (2022) 1, L10 (arXiv: 2210.15625)
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Tidal disruption event (TDE)
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Credits: Science Communication Lab/DESY

The shredding apart of a star when it comes close to a SMBH, due to its tidal forces

Disruption starts

~ Half the debris is lost: 
Unbound orbit


~ Half the debris falls back: 
Bound orbit

Debris circularizes

Part of the debris may form an 
accretion disk

Winds, Outflows, 
etc.

(Timescales are also uncertain)
Rees 1988
Stone et al. 2013
Komossa 2015

https://www.youtube.com/watch?v=nLYQJWE4U_g


TDEs: particle accelerators and multi-messenger zoo
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EM ν

GW CR

TDE

Optical-UV (blackbody): mass 
fallback 


X-rays: wide variability

Radio: jets, outflows

∼ t−5/3

Observed

Associations

TDEs: Cosmic 
accelerators

 

 

h ∼ 2 × 10−22β(D/10Mpc)−1 m4/3
* r−1

* M2/3
BH,6

f ∼ 6 × 10−4Hz β3/2m1/2
* r−3/2

*
(β = RT /RS)

Prospects for LISA: IMBH-WD 
(but limited to galactic scales ~ 10 kpc)

S. Gezari, Annu. Rev. Astron. Astrophys. 2021. 59:21–58
Van Velzen et.al. (2021)
M. Toscani, G. Lodato, D.J. Price, D. Liptai, MNRAS (arXiv: 2111.05145)
Batista et al., Front. Astron. Space Sci. 6 (2019), 23



TDEs: high-energy neutrinos

17

(i) Relativistic jets

(Wang+16, Senno, Murase & Meszaros 17, Murase+ 20, Lunardini & 
Winter 17, 21) 

(ii) Disk (RIAF - MAD)

(Hayasaki & Yamazaki 19, Murase+ 20)  

(iii) Disk corona

(Murase+ 20) 

(iv) Wind/Outflow

(Murase+ 20, Wu+ 22, Winter & Lunardini 23)

Hayasaki, Nat. Astar. (2021)

TeV-PeV neutrinos


Various acceleration sites


Detectable at IceCube

Murase+ 20



Observational aspects -  Associationsν
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Stein et.al. (2021), Nat. Astro.
Reusch et.al. (2022), PRL
Van Velzen et.al. (2021)

∼ 217 TeV

∼ 82 TeV

∼ 176 TeV

Signalness: 0.59

Signalness: 0.59

Signalness: 0.45

Δt ∼ 150 days

z ∼ 0.051

Δt ∼ 393 days
z ∼ 0.267

Δt ∼ 148 days
z ∼ 0.036



Observational aspects -  Associationsν

19

Stein et.al. (2021), Nat. Astro.
Reusch et.al. (2022), PRL
Van Velzen et.al. (2021), 

∼ 217 TeV

∼ 82 TeV

∼ 176 TeV

Signalness: 0.59

Signalness: 0.59

Signalness: 0.45

Δt ∼ 150 days

z ∼ 0.051

Δt ∼ 393 days
z ∼ 0.267

Δt ∼ 148 days
z ∼ 0.036

Delayed arrival of associated 

neutrino events



Jetted TDEs
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Radio loud  
Jetted TDEs

Alexander et al (2020)

~ 1% of TDEs 
can be jetted

Non-relativistic 
outflows



Observational aspects - EM radio flares
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Cendes at.al. ApJ  938, (2022)
Cendes+ (2023)

Delayed radio flares: Evidence for late time-activity

Delayed radio flares



Motivations
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Jetted TDEs Delayed jet 
launching Choked jets?

Radio loud TDEs

Observational 
evidence of late time 

activity

Expanding spherical 
debris

tlag

vdeb

Multi-messenger 
signatures? 

Explanations?

Implications?

Delayed radio flares


Neutrino arrivals ~ a few 
100 days post optical 

peak



Motivations
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Jetted TDEs Delayed jet 
launching Choked jets?

Radio loud TDEs

Observational 
evidence of late time 

activity

Expanding spherical 
debris

tlag

vdeb

Multi-messenger 
signatures? 

Explanations?

Implications?

Delayed radio flares


Neutrino arrivals ~ a few 
100 days post optical 

peak

Physical 
Model



Physical Model: Expanding debris
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SMBH

CocoonRout(t)

Rh(t)

Rin(t)

Jet

Rc(t)

Debris

Wind

tcoc < t < tbr or tcoc < t < tfin

Convention:


 : Time since TDE


: Time lag associated with the 
launching of the jet


:  Time since the launch of the jet

T

tlag

t

Wind 
bubble 
region

Static and contracting envelopes have been considered

Rin(T ) = {Rcirc, 0 < T ≤ tfb ,
Rcirc(T/tfb), T > tfb

Rout(T ) = vdebT

ρdeb(t, r) = 𝒩
Mdeb

4πR3
out

(r/Rout)−2, r ≥ Rfb

(Rfb /Rout)−2(r/Rfb)−δ, r < Rfb

Rfb(T ) = {Rin(T = 0), T < tfb
Rin(T = 0) + vdeb(T − tfb), T ≥ tfb

T = t + tlag

δ = 1

vdeb



Physical Model: Expanding debris
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Physical Model: Jet propagation in expanding debris
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SMBH

CocoonRout(t)

Rh(t)

Rin(t)

Jet

Rc(t)

Debris

Wind

tcoc < t < tbr or tcoc < t < tfin

vdeb

Rh(t = 0) = Rs = 2GMBH/c2

·Rh = cβh

βh =
βj − βa

1 + L̃−1/2
c

+ βa

Wind 
bubble 
region

Ambient 
medium: 

surrounding 
medium of 
jet-head



Physical Model: Jet propagation in expanding debris
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SMBH

CocoonRout(t)

Rh(t)

Rin(t)

Jet

Rc(t)

Debris

Wind

tcoc < t < tbr or tcoc < t < tfin

vdeb

Rh(tdur = 0) = Rs = 2GMBH/c2

·Rh = cβh

βh =
βj − βa

1 + L̃−1/2
c

+ βa

L̃ =
Lj

Σj(t)ρa(t)c3Γ2
a

Wind 
bubble 
region

Ratio of energy 
density between jet 

and ambient medium

Jet-head cross-
section

ρa(t) = ρdeb(t, r = Rh)
Density of ambient 

medium

L̃c = N2
s L̃

Calibration 
factor



Physical Model: Formation of cocoon and interaction
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SMBH

CocoonRout(t)

Rh(t)

Rin(t)

Jet

Rc(t)

Debris

Wind

tcoc < t < tbr or tcoc < t < tfin

vdeb

Rc(t = tcoc) = Rj(t = tcoc) = Rh(t = tcoc)θ0

·Rc = cβc

βc ≈
1
c

Pc

ρa(t)
+

Rc(t)
Rout(t)

vw

c

Pc(t) =
Ec

3Vc
=

η
4πRc(t)2Rh(t) ∫

t

tc

dt̃ Lj(t̃ )(1 − βh(t̃ ))

Wind 
bubble 
region Cocoon pressure

Jet head reaches the inner radius of the 
debris

η : Fraction of jet energy deposited 
in cocoon



Dynamics: To collimate or not collimate
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Collimation criteria:
Pc(t) = Pj(t)

Collimated Uncollimated

Bromberg et al (2011)

Jet pressure Cocoon pressure

(Lateral)



Cocoon is 
formed

Pc(T)
Pj(T)

Pj(T)

Pj(T)

Pc(T)

Pc(T)

t = tcoc

tlag = 107 s, vdeb = 0.03c

Dynamics: To collimate or not collimate

30

Collimation
Pc(t) = Pj(t)

Uncollimated



Dynamics: To choke or not to choke
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Rout(t)

Rh(t)

Rin(t)

Rc(t)

Breakout

Rout(t)

Rh(t)

Rin(t)

Rc(t)

Choked
Choking criteria:
Rh(tdur) ≤ Rout(T )



Dynamics: To choke or not to choke
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Cocoon 
is formed

Breakout

Choked

Choked

t = tcoc

tlag = 107 s, vdeb = 0.03c



Dynamics: Analytical estimate for choking
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Lj,iso ≲ 3.2 × 1045 erg/s ( Ns

0.35 )−5( Mdeb

0.5M⊙ )( θ0

0.17 )2( βdeb

0.03 )2( tdur

107 s )−1( χlag

2 )2

Rh(tdur) ≤ Rout(tfin)Choking criteria T = tfin = tdur + tlag

Total evolution time

Rout ≃ 1.8 × 1016 cm ( βdeb

0.03 )( tdur

107s )( χlag

2 ) χlag = (1 + tlag/tdur)

Assuming uncollimated jets

Rh ≃ 5.6 × 1015 cm ( Ns

0.35 )5/3( Lj,iso

1044 erg/s )1/3( Mdeb

0.5 M⊙ )−1/3( θ0

0.17 )−2/3( βdeb

0.03 )1/3( tdur

107 s )4/3( χlag

2 )1/3

Fairly good estimates



✶

✶

✶

✶

✶

✶

□

□

□

✶ tlag = 106 s, vdeb= 0.03c

□ tlag = 107 s, vdeb= 0.03c

1040 1041 1042 1043 1044 1045 1046 1047

1×106

2×106

5×106

1×107

Lj,iso [erg/s]

t b
r
-
t la
g
[s
]

Dynamics: the land of choked jets
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Lj,iso ≲ 3.2 × 1045 erg/s ( Ns

0.35 )−5( Mdeb

0.5M⊙ )( θ0

0.17 )2( βdeb

0.03 )2( tdur

107 s )−1( χlag

2 )2

✶

✶

✶

✶

□

□

□

▼

▼

✶ tlag = 107 s, vdeb = 0.01 c

□ tlag = 107 s, vdeb = 0.03 c

▼ tlag = 107 s, vdeb = 0.1 c

1040 1041 1042 1043 1044 1045 1046 1047

2×106

4×106

6×106

8×106
1×107

Lj,iso [erg/s]
t b
r-
t la
g
[s
]

tlag : The debris has more 
time to expand

Jets require higher 
luminosity to breakout

vdeb :

The debris expands with a higher 
velocity: extends to larger radii

Jets require higher 
luminosity to breakout



Electromagnetic (EM) and Neutrino Signatures
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Signatures from delayed choked jets

Particle acceleration within jets:
EM signatures

UHECRs
High-energy neutrinos

Jet-head

Relativistic Sub-relativistic
(Initially)

Interactions with 
the debris: cocoon

Deceleration

Shocked regions
Forward shock
Reverse shock

Relativistic electrons are accelerated

Cool due to radiative losses: 
Synchrotron, inverse Compton,….

Wheeler, Phil. Trans. R. Soc. (2012)



Motivations
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Jetted TDEs Delayed jet 
launching Choked jets?

Radio loud TDEs

Observational 
evidence of late time 

activity

Expanding spherical 
debris

tlag

vdeb

Multi-messenger 
signatures? 

Explanations?

Implications?

Delayed radio flares


Neutrino arrivals ~ a few 
100 days post optical 

peak



Lj,iso = 5 × 1045erg s−1

✶

✶

✶

✶

✶

✶

□

□

□

✶ tlag = 106 s, vdeb= 0.03c

□ tlag = 107 s, vdeb= 0.03c

1040 1041 1042 1043 1044 1045 1046 1047

1×106

2×106

5×106

1×107
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t b
r
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g
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Electromagnetic (EM) and Neutrino Signatures
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Lj,iso ≲ 3.2 × 1045 erg/s ( Ns

0.35 )−5( Mdeb

0.5M⊙ )( θ0

0.17 )2( βdeb

0.03 )2( tdur
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2 )2
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✶
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g
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EM Signatures: Reverse Shock - Slow Cooling (z = 0.05)
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FRS
syn,max ≃ 37 mJy ( fe/0.48)nRS

2.53R3
h,16.21Γ

RS
0.70BRS(1 + z)d−2

L,26.82

ChandraRubin

VLA ALMA

SKA

νRS
m

νRS
c

ϵe = 0.01, ϵB = 0.0001

BRS ≃ 0.32 G



EM Signatures: Reverse Shock - Fast Cooling (z = 0.05)
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Chandra

VLA

ALMA

SKA

Rubin

νRS
sa

νRS
m

ϵe = 0.1, ϵB = 0.1

FRS
syn,max ≃ 37 mJy ( fe/0.48)nRS

2.53R3
h,16.21Γ

RS
0.70BRS(1 + z)d−2

L,26.82

BRS ≃ 10.25 G



IceCube PS Limit

Choked

τT > 1

Analytical 
estimate

Neutrino Signatures: Choked jets ( )tlag = 107 s, z = 0 . 05

40

Thomson optical depth

Eν = 1 % of Ej

What is the energy budget required for the jet to produce 1 
neutrino event given the IceCube point source (PS) limit

AT2019dsg

Can explain the 
coincident neutrino 

observations


Also for AT2019aalc


AT2019fdr is still 
challenging
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Outline

Part 1: Can choked delayed jets explain the neutrino coincidences associated with 
TDEs?


Based on: Multi-messenger signatures of delayed choked jets in tidal disruption events

MM, M. Bhattacharya, K. Murase

(submitted to MNRAS) (arXiv: 2309.02275). 

Part 2: Hunting for neutrinos from BNS mergers at next-generation GW and 
neutrino detectors 

Based on: Gravitational wave triggered high energy neutrino searches from BNS mergers: 
prospects for next generation detectors 
MM, S. S. Kimura, K. Murase 
Phys. Rev. D 109, 4, 043053 (2024) (arXiv: 2310.16875) 

Part 3: Constraints from non-detection of neutrinos from the BOAT - GRB 221009A


Based on: Neutrinos from the Brightest Gamma-Ray Burst?

K. Murase, MM, A. Kheirandish, S. S. Kimura, K. Fang

ApJ Letters 941 (2022) 1, L10 (arXiv: 2210.15625)
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High energy neutrinos from BNS mergers

Kimura+, PRD (2018)

No detections yet :(
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High energy neutrinos from BNS mergers

Fang and Metzger,  ApJ (2017)
Metzger and Piro, MNRAS (2014)
MM and S.S. Kimura (in prep)

Preliminary

No detections yet :(
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Next-generation GW and neutrino detectors

Einstein Telescope (ET)

Evans et al., (2021)

IceCube-Gen2



Detection strategy: triggered stacking search
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Trigger from next-
gen GW detectors

Neutrinos in 
IceCube-Gen 2

δt ≈ 1 s − 107 s

δt δt δt δt

1 signal 
event

1 signal 
event

1 2 4

 Ic
eC

ub
e-

G
en

2

da

ta

t3

t2
t4

53

Triggered-stacking searches

t1

t5

δt
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Next-generation GW detectors

Sensitive to NS-NS 
mergers from very 

high redshifts

Evans et al., (2021)



Impacts on triggered stacking searches
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Trigger from next-
gen GW detectors

Neutrinos in 
IceCube-Gen 2

δt ≈ 1 s − 107 s

δt1

δt2
δt4

δt5

1 2 4

 Ic
eC

ub
e-

G
en

2

da

ta

t3
t2

t4
53

Largely uncertain 
time-windows

t1
t5

δt3

Sensitivity to high-
redshifts -> lots of 

triggers

Spoils triggered 
stacking searches

How do we find 
meaningful triggers?
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Motivations: How to obtain meaningful triggers?

Use the sky localization capabilities of the GW detectors….

Fraction of total 
sky area covered Set threshold: fth

Obtain distance 
limits for GW 

detectors to collect 
meaningful triggers

Abbott et al., Liv. Rev. Rel. (2020)
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Sky localization and BNS merger rate

Chan et al., PRD (2018)
Wanderman & Piran, MNRAS (2015)

ET

ET+CE

CE
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Distance limits for GW detectors

δt = 1000 s

∫
d lim

GW

0
d(dcom)

ΔΩ(dL)
4π

R(z)4πd2
comδt = fcov(dlim

GW)

CE
ET

ET+CE

δt = 1000 s

fth = 10−2

fth = 10−3

fth = 10−4
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Distance limits for GW detectors -  planeδt − fth

Log10dUL
GW

[Mpc]

ET ET+CE

Lo
g 1

0
f th

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Log10 δt Log10 δt Log10 δt

CE
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High energy neutrinos from BNS mergers

I(zGW
lim , Top) = 4π∫

dUL
com

0
d(dcom)

Top

(1 + z(dcom))
R(z(dcom))d2

comPn≥1((1 + z(dcom))dcom)

q(zGW
lim , Top) = 1 − Exp( − I(zGW

lim , Top))

dUL
com = min(dGW

hor (zGW
lim ), dGW

max(zGW
max))

ϕν(EHE
ν , Eν, r) =

1
4πr2

EHE
ν

ln(EUL
ν /ELL

ν )
E−2

ν

Probability to detect more than one neutrino 

I(dUL
GW) = 4π∫

dUL
GW

0
d(dcom)

Top

(1 + z)
R(z)d2

comPn≥1(dL)

q(dUL
GW, Top) = 1 − exp( − TopI(dUL

GW))

dUL
GW = min(dlim

GW, dhor
GW)

ϕν(ℰHE,iso
ν , Eν, dL) =

(1 + z)
4πd2

L

ℰHE,iso
ν

ln(εmax
ν /εmin

ν )
E−2

ν

Probability to detect more than one neutrino 
associated with GW signal in  
Top

Probability to detect 
more than one neutrino


Assume a Poissonian probability


The event rate is calculated is 
convoluting the IceCube 10 years 

point source effective area with the 
muon neutrino flux


The flux is calculated assuming a 
spectrum. 
dNν /dEν ∝ E−2

ν

Depends on δtDepends on fν

ℰHE,iso
ν =

ℰHE,true
ν

fbm
= ( fν

fbm )ℰGW

ℰHE,true
ν = fνℰGW α ∼ 1 %ℰGW ∼ αℰtot
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Results - varying  and fν δt

δt

fν

Fiducial Parameters:






fν = 2.5 × 10−5

δt = 1000 s
Etot ∼ 5 × 1054erg

10−5 5 × 10−5

1 s 106 s

Motivated by 
physical models
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Results - varying  and fν δt

δt

fν

CE ET ET+CE

2σ 2σ 2σ

3σ
3σ 3σ

( fth = 1%) ( fth = 0.1%) ( fth = 0.01%)

CE ( fth = 1%) ET ( fth = 0.1%)

2σ

3σ

2σ

3σ

ET+CE

2σ

3σ

( fth = 0.01%)

fν = 2.5 λ

fν = 5 λ

fν = 1 λ
fν = 1 λ

fν = 2.5 λ

fν =
5

λ

fν = 1 λ

fν =
2.5 λ

fν =
5

λ

δt = 1000 s

fν = 2.5 λ

δt = 10 3s

δt = 10 3s

δt =
10 3

s

δt =
1 s

δt = 106 s

δt =
1

s

δt = 10 6 s

δt =
1

s

δt = 10 6s

λ = 10−5
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Backgrounds

N bkg
trig = 0.01

N bkgtrig = 0.1

N bkgtrig = 1



Takeaways
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Part 1: Multi-messneger signatures of choked delayed jets in TDEs 

Late time activity associated with the SMBH from observations: 
- Delayed radio flares

- Coinicident neutrino detections: arrival after ~ 150 days, ~ 393 days, and 148 days post the optical peaks for AT2019dsg, 

AT2019fdr and AT2019aalc, respectively


Possibility of choked delayed jets 

- Spherical debris envelope surrounding the SMBH, expanding outwards possibly driven by wind.

- Jet-cocoon interactions: collimation and choking - Higher delay times and debris velocities help with choking


Electromagnetic and neutrino signatures 

- Synchrotron radiation from delayed choked jets: Reverse shock: slow and fast cooling cases

- Optical and X-ray observatories: good prospects, radio observations seem likely as well.

- Can explain the coincident observations by IceCube - AT2019dsg and AT2019aalc with this scenario of choked delayed jets.

Part 2: GW triggered searches for high energy neutrinos from BNS mergers: prospects for next-gen 

• ET+CE can give coincident neutrino events or 3  level constraints on the parameter space, due to extremely good sky localization capabilities 
over a timescale of  years even for the less optimistic scenarios.


• ET can lead to  constraints owing to its good sky localization capabilities over a time scale of 20 - 30 years for the less optimistic cases. CE 
has comparatively poor sky localization and hence may be good for coincident detections or 2 -level constraints over reasonable time scales for 
optimistic parameters.


• Our analysis can constrain  for a population of BNS sources: understanding emissions from BNS mergers


• Model independent analysis can help constrain models: neutrinos from choked jet scenarios and hence provide insights regarding GRB jets, 
neutrino emission sites and mechanisms.

σ
∼ 20

2σ
σ

fν
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Thank You!



Backup
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What are TDEs?
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RT = R*
MBH

M*

The shredding apart of a star when it comes close to a SMBH, due to its tidal forces

Tidal disruption radius:Disruption starts

~ Half the debris is lost: Unbound orbit

~ Half the debris falls back: Bound orbit Fallback time: tfb = 2π a3

min/(GMBH)

Debris circularizes Circularization radius: Rcirc = 2RT

Part of the debris may form an 
accretion disk

Winds, Outflows, 
etc.

(Timescales are also uncertain)

amin ≈ R2
T/(2R*)Semi-major axis:



The neutrino associations
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Reusch ECRS 2022 (arXiv: 2307.00902)



tlag = 107 s, vdeb = 0.03c

Ambient medium density ( )ρa
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ρa ∝ Rh(t)−2



Dynamics: the land of choked jets
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Electromagnetic (EM) signatures
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νES
α =

3
4π

eBES

mec
ΓES

(1 + z) (γES
α )2

ES: External shock can be Forward or Reverse shock region

: Can be injection frequency (m) or cooling frequency (c)


B: Magnetic field strength in the region

: Bulk Lorentz factor in the shocked region


: Lorentz factor associated with the electrons

α

Γ
γ

The absorption frequency  is given by setting the 
synchrotron self-absorption optical depth to 1

νsa

BES = [32πϵBΓES(ΓES − 1)nESmpc2]1/2

Fraction of electron energy converted 
to magnetic field energy


