Preliminary Fluka simulations

Paola Sala

20 March 2024

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Geometry

- Inner membrane : Fe7Cr2Ni steel thickness 0.12cm $\rho = 7.93g/cm^3$
- Insulation: polyure thane foam, $C_{17}H_{16}N_2O_4$, 40cm in each dimension
 - $\rho = 0.035 g/cm^3$.
 - Checked with $\rho = 0.085g/cm^3$.
- Steel support: Fe7Cr2Ni 1 cm
- 4 PD modules, 60x60 cm, 1.5cm thickness, assumed plastic
- PDS frame G10, 2.5 cm lateral 1.5 cm thick
- Drift distance 21.5 cm
- inner membrane dimension 100 × 389 × 391.3
- active LAr 337 × 299.3
- Ar gas starts 60 cm from bottom
- Three anode planes, G10, 0.32 cm each

More Geometry

- Axis: x is vertical, z is Salève-Jura
- DD generator shielding:
 - 12 cm square internal hole
 - ▶ 15 cm Borated (5%) poly on all sides
 - 2.5 cm lead on all sides
 - $\blacktriangleright~\approx 10$ cm Al support below
- placement
 - on top of the cryo, at z=y=0
 - on the side, x at middle of the drift

Neutrons

Source location at 1 cm above the bottom poly level. To be changed?: from ORNL/TM-2017/57 (2017): ThermoFisher Scientific MP 320... point of neutron generation \approx 14.4 cm from the end of the tube.

Energy / angle

- 2.5 MeV monoenergetic isotropically emitted
- Non-isotropic, non monochromatic, according to parameters in C.S.Walz PhD thesis, Univ. of California, Berkeley, 2016, assuming tube operation at 95 keV

.∃⇒ ⇒

Photon detectors

- 60 × 60 cm, four of them, at 10 cm above bottom membrane
- material: plastic
- thickness:
 - 1.5 cm (wrong initial guess)
 - 0.5 cm reasonable

PD influence neutron capture, through thermalization

Figures: Distribution of capture locations, view from top.

Top: D-D on the top: accumulation above PD

Bottom: D-D on the side: asymmetric z-distribution

Preliminary Fluka simulations

More geometry questions

- Anode: material. thickness, transparency
- Anode support: steel? dimensions?
- Photon detectors: thickness and material

Geometry sections

on the side

Paola Sala

Capture rates

	D-D on top	D-D on side
PD 0.5 cm	$8.2 \ 10^{-4}$	$6.7 \ 10^{-4}$
Foam 0.035		
Mono E		
PD 0.5 cm	$1.5 \ 10^{-3}$	$1.2 \ 10^{-3}$
Foam 0.085		
Mono E		
PD 1.5 cm	$9.7 \ 10^{-4}$	7.8 10 ⁻⁴
Foam 0.035		
Mono E		
PD 1.5 cm	$1.7 \ 10^{-3}$	$1.3 \ 10^{-3}$
Foam 0.085		
Mono E		
PD 0.5 cm	$9.1 \ 10^{-4}$	$7.4 \ 10^{-4}$
Foam 0.035		
Distr. E		

- Capture rates in the 0.1 % range
- Higher foam density \rightarrow more captures
- More Photon
 Detector material
 → more captures
- Non uniform energy/angle neutron distribution → more captures

→ ∃ →

Capture depth

Depth distribution of capture positions. For a DD gun on the side In the last 20 cm 4.8^{-6} captures/neutron Over the farthest tile 5.0^{-6} captures/neutron

Capture time

Time distribution(seconds) of neutron captures in the active LAr volume. For a DD gun on the side Average: 0.4 milliseconds

20 March 2024

- Understand differences wrt G4
- Finalize the geometry
- Dump more detailed description of the events
- maybe look also at ³⁶Ar? small percentage but high energy photons

11/11