VD CB Light Simulation Update

March 20, 2024

Wei

PNS from the side: Expected signal distributions

XA0 (C2) is the farthest XA from the PNS (see more captures in G4 sim) XA3 (C4) is the closest XA to PNS

Peak at small PE: because most captures are far from XA 60cm x 60cm acceptance window \rightarrow small solid angle (next slide)

Simulated 4.7 MeV e⁻ in ColdBox Geometry

- angle to the detector (and light yield)
- Focus on γ source (n-capture) right on top of any of the 4 XAs on cathode

ColdBox has small drift volume: a small change in source position makes huge difference in solid

4.7 MeV γ : Physics processes

- Two relevant processes at this energy: Compton scattering and pair production

 - Pair production is ~20% (identify e^+ in secondary particles)

An example: Particle gun generated 4.7 MeV γ @ ~15 cm above XA0

• 730-PE peak contribution from both Compton scattering(s) and pair production

4.7 MeV γ : Cross check with simulated e^{-1}

Same example: Particle gun generated 4.7 MeV γ @ ~15 cm above XA0

- Overlaid: simulated e- with momentum p = 4.7 MeV
 - Corresponds to 4.217 MeV kinetic energy, i.e. deposited energy
 - The 730PE-peak comes from 4.22 MeV total energy deposit (not 4.7MeV!)

1.2 MeV γ

Another example: one of the other commonly released is 1.2 MeV γ Particle gun generated 1.2 MeV γ @ ~15 cm above XA0 center

• At this energy, dominated by Compton scattering (>99.9%), peak at 170 PE

1.2 MeV γ : Cross check with simulated e^{-1}

• Overlaid is simulated e^- at same location with different momentum p (different KE) The 170PE-peak corresponds to 1 MeV total energy deposit (electron p=1.42MeV)

1.2 MeV γ e ⁻ : p = 1.63 MeV (KE=1.2MeV) e ⁻ : p = 1.42 MeV (KE=1MeV) e ⁻ : p = 1.2 MeV (KE=0.79MeV)	Entries	10000
	Mean	134.7
	Std Dev	55.44
	Entries	10000
	Mean	204.2
	Std Dev	17.18
	Entries	10000
	Mean	168.6
	Std Dev	15.46
	Entries	10000
	Mean	131.8
	Std Dev	13.61
300 400	500 XA0 Detec	60 ted PEs
7		

167 keV γ

Particle gun generated 167 keV γ source @15cm above XA0 center

100% Compton scattering, peak @~20PE

Particle gun - Altogether: 4.7MeV + 1.2MeV + 167keV γ s

3 γ simulated at the same spacetime (x, y, z, t). n-capture produced 3- γ cascade should produce similar signal distribution

Double peak structure: Aim to look for this distribution in PNS-PDS data (and simulation)

875-PE peak from all 3 γ : an energy deposit of ~5.37 MeV (4.2+1+0.167) 225-PE peak from 2 γ : 1.2MeV γ + 167keV γ , an energy deposit of ~1.17 MeV (= 1+0.167)

Particle gun - Altogether: 4.7MeV + 1.2MeV + 167keV γ s

875-PE@5.37MeV Gaussian fit: sigma/mean ~ 10% This is the simulated calibration uncertainty (i.e., broadening due to γ interaction) Statistical resolution @875PE is $1/\sqrt{875} \sim 3.4\%$

d=15cm (drift direction) ③

Dependence on 3- γ position: drift direction - x

Left plot: larger PD signal when source is closer to XA (expected) **Double peak structure well-preserved**

Right plot: one conservative cut can be: XA0 > 500 PE, XA1,2,3 < 10 PE This data selection rule doesn't depend on CRP But to derive position-wise LY map, we need CRP position information

Dependence on $3-\gamma$ position: X-Arapuca plane / y direction

Signal distribution further shifts to low PE side if capture happens at the 4 square edges of XA (@ 19.5cm drift distance in x)

Double peak structure still visible, but start to merge

One conservative cut can be: XA0 > 250 PE, XA1,2,3 < 10 PE

Dependence on $3-\gamma$ position: **Cross check in z direction**

Z direction phase space is slightly different Center+30cm edge in z: smaller signal due to CB boundary (not the case in FD/ PD-VD)

Center-30cm edge in z: signal is larger than y direction (previous slide)

Same conservative cut in previous slide applies: XA0 > 250 PE, XA1,2,3 < 10 PE

d=19.5cm (\mathbf{i}) 7

Dependence on $3-\gamma$ position: XA corners

Smaller signal at CB boundary (not the case in FD/PD-VD)

Same conservative cut in previous slide applies: XA0 > 250 PE, XA1,2,3 < 10 PE

- Summary

 - **PDS energy calibration relies on double-peak distribution** (the higher PE peak)

- Outlook:
 - Understand impact on signal from different cascade modes
 - Implement membrane XAs: need M1 & M2 position info...
 - Understand bkgs (cosmics, γ s...)
 - •

 XAO > 250 PE, XA1/2/3<10PE : selects captures on top of XA (60 cm x 60 cm x 19.5 cm) Captures outside XA acceptance window (60cmx60cm) produce very small signals on XA Joint PDS+CRP analysis is critical: need CRP position info to derive position-wise calibration • Deposited energy at largest PE peak is lower than cascade γ energy (i.e., < 6.1MeV)

Other cascade gammas?

- 4.7MeV + 1.2MeV + 167keV γ s happens more often than other cascade γ s
 - Gammas total E is 6.1MeV (standard deviation is ~keV, very small, negligible)
 - But do they have similar signal shape?
 - Other cascade modes:
 - 4.7MeV, 837keV, 516keV
 - 3.089MeV, 2.8MeV, 167keV
 - 5.582MeV, 516keV
 - 2.7MeV, 2.8MeV, 516keV
 - 3.36 MeV, 2.56 MeV, 167 keV
 - 3.7MeV, 1MeV, 1.18MeV, 167keV
 - 2.1MeV, 2.6MeV, 1.1MeV, 167keV
 - •