UW Work Scope: Bottom CRP Supports Value Engineering Meeting

lan Jentz March 26th, 2025

Bottom Support Design driven by FD2 Requirements

Categorize broad Design Requirements

- **Compliance** with engineering requirements
- Integration with other FD2 components and install procedures
- Value in cost and delivery of components

Consider **Design Features** that address specific requirements

- All features address **Value** requirement by reducing cost of material, manufacture, and assembly labor
- Cost has improved over course of bottom support design and verification
 - March 2022, Preliminary Design Review: \$11,232 cost per CRP
 - March 2023, Module 0 install: \$6,790 cost per CRP
 - March 2024, FD2 production estimate: \$4,887 cost per CRP

Overview of Features and Components

• Bottom CRP support design submitted in March 2022 PDR

Consider Design Features that address requirements

Design Feature	Design Requirements		
	compliance	integration	
all features	-LAr compatible materials and designs that do not trap atmosphere during LAr fill.	-minimizes/eliminate assembly/adjustment of components within FD2 cryostat	
CRP Adapter Plate	-distribute CRP structure loading to bottom support -match thermal expansion of CRP structure, preventing thermal contraction loading of CRP	-rectify differences in FD2 membrane floor layout and bottom CRP layout -attachment to CRUs at the CRP factory prior to shipping to FD2	
Floor Contact	-distribute weight to membrane floor -maintain contact with floor during LAr fill (no slipping)	-allow CRP install without modification/attachment to membrane floor	
Elevation	-raise CRP above membrane floor to desired detector height	-height adjustment possible during FD2 install	
CRP Alignment	-installed CRPs achieve exact placement on membrane floor -maintain designed edge gap (5mm) to neighboring CRP	-no modification of CRP structure	
Sliding Mechanism	-supports allow thermal contraction of CRP relative to membrane floor	-components maintain orientation during CRP installation -thermal contraction does not put excessive force or displacement on CRP Value	

Each Design Feature has been improved and FD2 design determined

- **Design Solution** that was identified at the Preliminary Design Review (PDR)
- Value Engineering prototyping, testing, and analysis performed to evolve the design
- Value **Optimized design for FD2** production scaling (next step FD2 integration test)

CRP Adapter Plates: Design

CRP Adapter Plate

Design Requirement	Design Solution
compliance	compliance
-distribute CRP structure loading to bottom support	-G10/FR4 plate spans opening in CRP structure and being of
-match thermal expansion of CRP structure, preventing thermal	the same material contracts with the structure
contraction loading of CRP	-bolt on connection of bottom support allows variable support
	placement and attachment to CRP once within "FD2"
integration	integration
-rectify differences in FD2 membrane floor layout and bottom	-CRP and support specific placement of threaded holes in the
CRP layout	adapter plate
-attachment to CRUs at the CRP factory prior to shipping to	-adapter plate identifier is engraved in same process as drilling
FD2	support attachment holes. This allows correct adapter plates to
	be matched to CRUs when installed at the CRP factory.
	- mounting holes for bolting plate to rivets in CRP structure.

CRP Adapter Plates: Value Engineered Solution for FD2

CRP Adapter Plate

Value Engineering	Optimized FD2 Design
compliance	compliance
-model of loading of CRP structure with adapter plates and supports to determine optimum plate thickness -prototyped bottom support attachment hardware, testing threaded inserts vs threaded holes in an attempt to reduce machining and assembly costs.	 -Reduced G10/FR4 plate thickness from 0.500 to 0.250 inches, saving material and machining cost -Determined that reduced number of larger bottom fasteners (4 M6 threaded holes) was more efficient than smaller holes with threaded inserts. Tapping 4 threaded holes per plate is slightly more machining, but no additional labor of installing threaded inserts. Threaded inserts also generated some brass dust when fastening. -Could remove LAr flow holes
integration	integration
-prototype iteration with CRP structure team on what	-adopted common M6 rivet attachment design for FD2
threaded rivet nuts to attach to in the CRP structure	-added lifting tool holes for integration of factory and FD2 CRP lifting
-Tested adapter plate fit during CRU construction both at	frames.
BNL and CERN Module 0 test.	-included larger adapter plate to accommodate CRU-by-CRU installation of last 2 CRPs in FD2

Floor Contact: Design

Floor Contact	
Design Requirement	Design Solution
compliance	compliance
-distribute weight to membrane floor -maintain contact with floor during LAr fill (no slipping)	-stainless steel foot pad with chamfered non-marring edges provides like membrane floor thermal contraction
integration -allow CRP install without modification/attachment to membrane floor	integration -flat metallic foot distributes weight at membrane floor center. Open indexing hole in center of foot allows hardware-less alignment and attachment to installation truss.

Initial Foot design From March 2022 PDR. Made out of stainless steel was found to be too slippery under LN to work as fixed foot

Floor Contact: Value Engineered Solution for FD2

Floor Contact	
Value Engineering	Optimized FD2 Design
compliance	compliance
-component testing of foot pad in LN determined threshold force to slip from membrane floor. Tested stiction of various foot pad materials	-higher grip Aluminum foot pad prevents slip at the membrane floor
integration	integration
-demonstrated place-down installation of CRP 4 and 5 within NP02 cryostat -repeated loaded foot drag testing showed no marring of stainless-steel membrane floor.	-octagonal aluminum foot with chamfered edges provides cryo temp grip with membrane floor.

Foot friction testing Testing foot-membrane floor slip at differing loading and RT air or submerged LN conditions. Aluminum foot provided best grip in all cases.

Material	Static Coef. Of Friction under LN	
Stainless Steel Foot	0.27	
Aluminum Foot	0.49	
Rubber Foot	0.24	
*all on stainless-steel membrane floor		

Aluminum with option to add corrugation bumper. Bumperless design installed in Module 0

Elevation: Design

Elevation	
Design Requirement	Design Solution
compliance	compliance
-raise CRP above membrane floor to desired detector height	-Aluminum post machined to desired height of support.
integration	integration
-height adjustment possible during FD2 install	-Set of three leveling screws allow +/- 5 mm height adjustment
	of a support.

Elevation: Value Engineered Solution for FD2

Elevation			
Value Engineering	Optimized FD2 Design		
compliance	compliance		
-Aluminum post machined to desired height of support.	-Mounting hardware reduced to 4 M6 bolts.		
-Module 0 install tested the control of elevation spacing using	-Could evaluate cheaper plastic materials, but need to consider		
posts. Additional spacer posts used as CRP 4 and 5 are	load capacity and creep at LAr temp.		
installed at higher elevations than FD2 CRPs.			
integration	integration		
-Tested leveling/height adjustment of CRP 4 and 5 while on	-Stainless steel thread inserts allow smooth height screw		
installation truss during Module 0 install.	adjustment within Aluminum foot body.		

Height adjustment and leveling Utilized a self leveling line laser at Module 0 to level CRP while on installation truss

Installed height at Module 0 Height of top of edge board to membrane floor. Measured at corners using measuring tape.

CRP Alignment: Design

CRP Alignment

Design Requirement	Design Solution		
compliance	compliance		
-installed CRPs achieve exact placement on membrane floor -maintain designed edge gap (5mm) to neighboring CRP	-Bump-off plates are mounted to sides of CRP structure. These allow installation personnel to gently push CRP against a reference plate of neighboring CRP bump-off plate		
integration	integration		
-no modification of CRP structure	-Bump-off plates are glued to CRP structure		

CRP Alignment: Value Engineered Solution for FD2

CRP Alignment

Value Engineering	Optimized FD2 Design		
compliance	compliance		
-Bump-off plate design tested in the installation of CRP 5. Gap of 3-4mm between CRP 4 and CRP 5 edge cards achieved. Alignment involved tedious and difficult labor on part of installation personnel which would be difficult to replicate in FD2.	-switch to new corrugation aligning foot design. Bumpers added to bottom support foot guide CRP into final position as it is lowered to the floor.		
integration	integration		
-Were able to glue on bump-off plates within NP02 cryostat.	-corrugation aligning foot design does not modify the CRP structure		
Added a teolous step.	structure		

Difficult for install personnel Alignment requires constant pressure against bump off plate which is difficult for personnel to pull off in practice.

Sliding Mechanism: Design

Sliding Machanism

Design Requirement	Design Solution	
compliance	compliance	
-supports allow thermal contraction of CRP relative to membrane floor	 -provide a sliding interface within the bottom support which can give +/- 7 mm of travel in x and y. Thermal contraction of CRP is at most 6.3 mm for the longest span between supports. -centering mechanism keeps support from sliding when load is < 15.5 kg on support. Weight of CRP must be placed on supports before they can slide, allowing centering of the CRP feet in corrugation as CRP is lowered 	
integration	compliance	
-components maintain orientation during CRP installation -thermal contraction does not put excessive force or displacement on CRP Value	-fixed foot provides center of contraction for CRP, free 2D sliding support contract toward this center. CRP rotation is prevented by fixed foot and 1D sliding support	

Contraction about fixed support

Orientation of CRP is maintained. Reactions for opposite the slip direction. A small torque can be realized at the fixed post if slip is not uniform between the free posts.

Sliding Mechanism: Value Engineered Solution for FD2

Sliding Mechanism

Value Engineering		Optimized FD2 D	esign	
compliance -component testing campa bottom support component and material to find most re	ign in LN. Tested loaded prototype s varying sliding interface design eliable configuration.	compliance -identified PEEK-F interfaces as comp slightly favored du Module 0.	PEEK interface and stainle parable in low sliding friction e to machinability and test	ss-stainless on. PEEK is experience in
integration -modeled CPR contraction and sliding interaction using experimentally determine variation of sliding coefficient of friction. Found no adverse changes in displacement or excessive force applied to CRP during contraction-slip phase. -models did show that constrained 1D slip interface was unnecessary and could be replace by the easier to machine free 2D slip interface. Rotation of CRP was adequately prevented by the fixed foot, with only a low torque accumulating at the fixed foot.		integration -Design simplified to just the 2D slip interface. 1D slip interface was found to be unnecessary through modeling and testing.		
	 Sliding component testing We are 99% confident that the fr reside within a window of 55.5-1 134.8 [N] per foot would be the generienced by the feet. Design Value (1.5 SF) gives 202 [N 	ictional force will 34.8 [N] greatest force I] per foot		FD2 sliding support This is the same PEEK- PEEK sliding design that is in Module 0

Improvement in Bottom Support Costs

Cost savings realized by

- Material change from stainless steel to aluminum construction reduced material and machining costs for custom made parts
- Reduction in quantity and complexity of hardware through re-design of centering mechanism
- Assembly costs can be kept low by performing assembly at UW Madison.
 - Assembly by undergrads covered through UW base grant.,est 1 hour per support =~350 hours of undergraduate labor
- Cost of adapter plate material was reduced by going from 0.5 inch thick to 0.25 thick G10/FR4

Adapter Plates, 67% of bottom support cost

FedTech Order					price per adapter plate						cost ratio
dat	е	description		F	FedTech price		material estimate		machining estimate		machining/ material
	6/6/2022	0.500 thick Initial prototype plates		2	\$	1,016.55	\$	783.77	\$	232.78	0.30
	1/4/2023	0.250 thick Module 0 plates, for CRP 4 & CRP 5		8	\$	946.55	\$	391.91	\$	554.64	1.42
	10/3/2023	0.250 thick Module 0 plates, for CRP 6		4	\$	1,194.63	\$	391.91	\$	802.72	2.05
		0.250 thick FD2 adapter plates, prediction	32	8	\$	823.17	\$	261.27	\$	561.90	2.15

Prediction of \$823 per FD2 adapter plate

- **Material** cost for G10/FR4 plates **lowers** for **high volume** orders. First estimates are a **0.667 x reduction** (ePlastics.com). However there might by large suppliers who could get lower volume pricing
- Volume production cost of machining should lower as well. First estimate shows regular ordered CRP 4 & 5 plates at 0.7 machining cost reduction compared to rush ordered CRP 6 plates. Need to work with manufacturers to get more accurate high-volume pricing.

Can cost be further reduced

- **G10/FR4** is expensive to work with. It **dulls tooling** quickly and requires **dedicated machines** that get beat up (fiber glass dust wrecks everything).
- Need to **expand search for G10/FR4 manufacturers**. When in production phase we will go through a more rigorous bid process. A ~\$150k job will attract offers that prototyping runs didn't.
- Potential cost savings by matching tolerances to CRP structure

Conclusion

CRP Bottom Support Value Engineering

- Bottom support design to compliance and integration requirements
 - Allows for thermal contraction of CRP and can be installed in FD2
- Evolved design through testing
 - **Component Testing** of bottom support sliding system under LN
 - Demonstrated **installation of CRPs 4 and 5** with bottom supports at Module 0
- Design improved based on lesson learned in testing and Module 0
 - Identified preferred PEEK-PEEK 2D slider design
 - Improved CRP alignment systems base on Module 0 experience
- Extensive value engineering to reduce cost and improve ease of installation
 - Design and fabrication changes to reduce hardware, machining, and switch to cost effective materials
- Cost has improved over course of bottom support design and verification
 - March 2022, Preliminary Design Review: \$11,232 cost per CRP
 - March 2023, Module 0 install: \$6,790 cost per CRP
 - March 2024, FD2 production estimate: \$4,887 cost per CRP

