

PDS trigger rate estimation in ProtoDUNE-HD using the full ProtoDUNE-SP simulation

F. Bramati, D. Guffanti

NP04 PDS data taking planning 21/03/2024

Cosmic-induced light in the ProtoDUNE-SP PDS

- Triggered by the needs of the DAQ group for ProtoDUNE-HD Run II we were asked to provide a more detailed **assessment of cosmic-induced light in the ProtoDUNE PDS**.
- In order to face this task it is possible to use a full-fledged **cosmic ray simulation** based on **Corsika** embedded in the **ProtoDUNE Run I geometry**.
- The MC production used in this work is the one employed for the paper titled **"Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector**".

The PDS modules embedded for Run I are **light guide bars + ARAPUCA** instead of the new X-ARAPUCA ones.

The dataset definitions can be found at https://wiki.dunescience.org/wiki/ProtoDUNE-SP_datasets.

The dataset I specifically used is listed with the following names :

PDSPProd2_MC_1GeV_reco_sce_datadriven

•

which consists of mostly cosmic rays and 1 GeV beam particles on per event basis.

Trigger rate of a PDS module

- The aim of this work is to provide an **estimate** of the **trigger rate** of **PDS SuperCells due to cosmic-induced light**.
- The ProtoDUNE-HD PDS for Run II will be based on **X-ARAPUCA light traps** instead of light guide bars + ARAPUCA.
- A **PDS module** is made by **4 SuperCells**.
 - Taking into account that the overall photon detection efficiency (PDE) of a SuperCell is 3%, one wonders :
 - how many photons are detected on a SuperCell when a cosmic muon passes by?
 - what is the expected SuperCell trigger rate due to light produced by the crossing of muons in the active volume ?
 - Using a cosmic ray simulation embedded in the ProtoDUNE Run I geometry I could only provide an **estimate of the trigger rate of PDS modules**, and **not** the one for **individual SuperCells** (i.e. PDS channels).
 - Anyway, the **trigger rate of a PDS module** can be considered as an **upper limit to SuperCell trigger rate**.

Optical Detectors

- The number of **Optical Detectors** in the simulation is **90**, whereas the total number of PDS modules in ProtoDUNE-SP is **60**.
- Indeed, in the simulation there are 2 PDS modules made by **16 ARAPUCA cells**.

One ARAPUCA module is located in the top half of the upstream APA in the beam-side drift volume. A second is located in the middle of the APA in the center of the opposite drift volume.

2 virtual PDS modules created merging info from the corresponding 16 ARAPUCA cells.

Detected Photons on PDS due to cosmic muons

- The **sim::SimPhotonsLite** is a compact representation of photons on a channel.
- This object contains only the **total count of photon arriving at a certain time on the channel. The time is discretized in ticks**.
- · Detected Photons on Optical Detectors due to cosmic muons.

•

Using **OpDetBackTrackerRecord** to match optical photons arriving at Optical detector with its MCTruth cosmic primary.

Trigger Counter

- The PDS SuperCells have a **photon detection efficiency** (**PDE**) of **3%**.
 - Given the number of photons arriving at each Optical Detector it is thus possible to estimate on average the fraction of photons detected by a PDS module and the corresponding average number of photo-electrons.
- The trigger threshold is set to 1.5 photo-electrons (p.e.).

•

- I have considered a **trigger window** of **12.3** μ s (DAPHNE) \rightarrow to be update w/ the **16.4** μ s waveform length
 - The **SiPM time response to s.p.e.** can be taken into account using an **integration window**.
 - it is set to 500 ns., that is half the SiPM response time to s.p.e.

Trigger count on Optical Detectors

Trigger count on Optical Detectors due to **cosmic muons**.

•

PDS trigger probability

The **PDS trigger probability** is the probability than a muon crossing ProtoDUNE volume fires an Optical Detector.

.

.

The trigger probability is computed as the ratio of the recorded trigger counts to the number of cosmic muons producing optical photons.

PDS trigger rate due to cosmic muons

The **muon rate** at sea level is about **1 cm⁻² min⁻¹** for a thin horizontal detector.

- **cosmic μ rate** = 166.7 Hz / m²
- the upper surface of the ProtoDUNE LAr active volume is **6 x 6 m**² .

The **PDS trigger rate** due to cosmic muons is expected to be about :

0.3 trigger / μ x 167 μ s⁻¹ m⁻² x 36 m² = **1.8 kHz**

Since the trigger probability due to cosmic muons ranges from 0.1 to 0.5, one could expect a trigger rate due to cosmic muons spanning from **0.6** to **3 kHz**.

The expected data flux can be computed according to :

32 bit x 454 rows x 40 channels x trigger rate

w/ mean 1.05 Gb/s, spanning from 0.35 Gb/s to 1.74 Gb/s

PDS trigger rate due to cosmic muons : anode display

PDS trigger rate due to cosmic muons : anode display

11

Trigger rate with increasing photo-electron threshold

trigger rate as function of p.e. threshold

cosmic µ

³⁹Ar

Conclusion and next step

- A first preliminary estimate of the **PDS trigger rate** due to cosmic muons was provided using Corsika in ProtoDUNE-SP Run I geometry :
 - The trigger rate due to cosmic muons is expected to be **~1.8 kHz**, spanning from **0.6** to **3 kHz**.
 - The expected data flux is **1.05 Gb/s**, spanning from **0.35 Gb/s** to **1.74 Gb/s**
 - Since computed for a **PDS module**, this is can be considered an **upper limit for the trigger rate of a SuperCell channel**.
- Scan of trigger rate vs increasing p.e. threshold.
- Next step :

•

•

•

- run a small **Corsika** simulation using the **ProtoDUNE-HD geometry**.

Backup

DAPHNE streaming capabilities

• The DAPHNE bandwidth is 4.8 Gb/s.

•

.

٠

- The trigger rate due to cosmic muons spans from 0.6 kHz to 3 kHz.
- The expected data flux can be computed according to :
 - 32 bit x 454 rows x 40 channels x trigger rate
 - The estimated data flux is expected to have a mean value of **1.05 Gb/s**, spanning from **0.35 Gb/s** to **1.74 Gb/s**.

	K/D	31 30	29	28 2	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7		6	5	4	3	2	1	0
0	0		Li	ink				S	lot						Cra	telD								DetID						Vers	ion		
1	0000													Tir	ning m	aster T	ime st	tamp [3	1:0]														
2	0000													Tin	ning ma	aster Ti	me st	amp [6:	3:32]														
3	0000			1	Time	Pulse	_UB (1	0 bits,	so 6 hij	gh orde	r bits a	are 0)						1	`ime_P	eak (8	bits, so	2 high	orde	r bits ar	e 0)					Chan	inel		
4	0000							Max	Peak												Tim	e_Pul	se_0B	(11 bits	, so 5	high (order b	ts ar	e 0)				
5	0000	ADC([3:0],2]								ADC([13:0],1)										_		ADC	([13:	0].0)						
6	0000			ADC([7:0	0],4)										ADC([1	13:0],3])										AD	C([1	3:4],2)				
7	0000				A	ADC([1	11:0],6]												ADC([13:0]	5)								1	ADC([1	3:8],4)	
8	0000	ADC([10].9)							ADC([13:0],8)												ADC	([13:0]	7)							ADC((13:12],6)
9	0000		ADC([5:0],11)									ADC([1	3:0],10)											AD	C([13:	2],9)					
10	0000			AD)C([9:	:0],13])									1	ADC([13:0],1	2)									A	DC([13	3:6],11]			
11	0000					A	ADC([1	3:0],15	5)												ADC([13:0],1	4)		_	_				AI	DC([13	3:10],1	3)
	0000	· .			·												•					-						-					
446	0000	ADC([3:	0],101	0)						A	DC([13	:0],100)9]												ADC([13:0]	,1008)						
447	0000		A	DC([7:0],	1012	2]								A	DC([13	:0],101	1)										ADC	[13:	4],101	0)			
448	0000				AD	C([11	:0],101	4)									_	A	DC([1	3:0],1	013)								AD	C([13:	8],101	2)	
449	0000	ADC([1:0],1017)						A	DC([13	0],101	6)											ŀ	ADC(13:0] 10)15)							ADC([1	3:12],1014
450	0000	A	DC([5:	0],1019)								A	DC([13	:0],101	.8)											ADC	[[13:2]	1017)				
451	0000			ADC	C([9:0	0],1021	1)									Al	DC([1	3:0],10	20)									AD	C([13:	6],1019	9]		
452	0000			_		AI	DC([13	0],102	23)												ADC([13	3:0],10	22)							AD	C([13:	10],10	21)
453	0	TE	BD		Nun	nber_f	Peaks	0B	Nu	mber_l	Peaks	UB										Char	ge[19	:0]									

From Manuel Arroyave's talk @ ProtoDUNE PDS Sim/Reco meeting 18/03/2024

Detected photons on PDS

Detected photons on Optical detectors.

ARAPUCA cells

PDS trigger rate due to cosmic muons : anode display

PDS trigger rate due to cosmic muons : anode display

ProtoDUNE-SP geometry [cont'd]

- The origin is located at x=0 at the cathode, y=0 on the bottom of the APA's, and z=0 on the upstream edge of the most upstream APA, so that z coordinates are all positive.
- Geometry schemes are taken from the paper Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora.

.

•

Optical Detectors [cont'd]

There are **58** Optical Detectors with geometrical dimensions :

- Length = 209.683 cm
- Width = 0.476 cm
- Height = 10.16 cm
- Their IDs are in range [0,28] for those placed at x = 363.075 cm and in range [61,89] for those placed at x = 363.075 cm.

There are **32** Optical Detectors with geometrical dimensions :

- Length = 10 cm

٠

٠

- Width = 0.1 cm
- Height = <mark>8</mark> cm

Their IDs are in range [29,44] for a PDS module centered at x = 362.335 cm and y = 272.292 cm and in range [45,60] for a PDS module centered at x = -362.335 cm and y = 390.692 cm.

Trigger Counter : SiPM time response to single p.e.

- · In case only a single p.e. is detected, the PDS would not be triggered since the 1.5 p.e. threshold is not exceeded.
- However, it is important also to take into account the **SiPM time response to single photo-electrons (s.p.e.)**.
- Indeed, if subsequent p.e. were detected within the typical **SiPM time response to single p.e.**, they would be acquired piled-up with the former s.p.e., thus possibly contributing to the trigger if their sum exceed the threshold.

FBK DAPHNE V2

From Maritza Delgado

MOTIVATION

- DUNE X-ARAPUCA signals will have undershoot (bipolar signals).
- Larsoft signals were unrealistic and the reconstruction stage was not optimized for bipolar waveforms.
- To fully estimate the total charge and time of each pulse, a deconvolution needs to be implemented.
 - Especially important for scintillation signals!
- A deconvolution approach is needed and should provide:
 - Scintillation time profiles.
 - Charge and arrival time reconstruction.

DIGITIZER UPDATES

- **Digitizer module** provides option to include pulse **SPE template from version v09_60_01**.
- Included in the final version of the Digitizer/Deconvolution modules the following templates:
 - 2x CAEN digitizer and the Cold Amplifier (XArapuca with 48 SiPM FBK/HPK)
 - 2x Cold amplifier coupled with DAPHNE (XArapuca with 48 SiPM FBK/HPK)
- **OpHitFinder** has been updated to deal with deconvoluted waveforms.

DIGITIZER+DECONVOLUTION+OPHITFINDER

• Analysis combines data from 3 analyzers: Digitizer, Deconvolution & OpHit Finder.

Measurements – DAPHNE V2A

- Inspecting the undershoot behavior, we can see that changing the R_bvalue from 0Ω to 47Ω does no affect the recovery time of the signal. The shape although changes, eliminating the positive overshoot.
- Changing Cin from 100nF to 1uF, reduces the undershoot but affects the recovery time.
- Here, considering a 5% settling condition, the latter configurations yields the best results (4.4 μs 275 ticks). Considering for example, 1%, the signal takes 12.3 μs (769 ticks) to settle with C_{in} = 100nF and 27 μs (1688 ticks) to settle with C_{in} = 1uF.

Δt time interval distribution

For each channel, the **time interval** Δt can be defined as :

- $\Delta t_{ch} = | t_{max,ch} - t_{min,ch} |$

•

.

Therefore the **time interval Δt**_{ch} can be **different for each channel and for each event**.

tmin and tmax distribution

Trigger rate on Optical Detectors

Trigger rate on 90 Optical Detectors.

Trigger rate on Optical Detectors

Trigger rate on 60 Optical Detectors.

Trigger rate due to cosmic muons: Corsika Sample Time window

Trigger rate on Optical Detectors due to **cosmic muons** starting from **-3.325 ms** w/ a **6.45 ms time window**.

Trigger rate due to cosmic muons: 10 ms time window

Trigger rate on Optical Detectors due to **cosmic muons** starting from **-3 ms** w/ a **10 ms time window**.

Cosmic generator time information

- **TimeOffset** : start time of the exposure window [s], relative to the simulation time start.
- **SampleTime** : duration of the simulated exposure to cosmic rays [s].
- The time of the showers is uniformly distributed within the configured time interval, defined by SampleTime starting from TimeOffset.

From corsika_protodune.fcl

SampleTime : **6.45e-3** #0.2 ms (g4 rise time) + 2.25 ms (1 full drift window) + 4.0 ms (readout)

TimeOffset :-3.325e-3#4.0 ms readout should start at -0.875 ms to match data