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PanDA/iDDS
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● PanDA (Production and Distributed 
Analysis): Distributed workload 
Management
○ Distributed users
○ Distributed computing resources
○ General interface for users, one 

authentication for all sites
○ Integrated different computing resources 

(Grid, Cloud, k8s, HPC and so on), hide 
diversities from users, large scale

● iDDS (intelligent Data Delivery Service): 
Workflow management orchestration
○ DAG (Directed Acyclic Graph)
○ Complex workflow
○ Asynchronous results
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Distributed HyperParameter Optimization (HPO) in 
PanDA/iDDS

● Distributed HyperParameter Optimization 
(HPO)
○ Provide a full-automated platform for HPO on 

top of distributed heterogeneous computing 
resources

○ iDDS orchestrates hyperparameter 
generation and results collection; automation

○ PanDA evaluates hyperparameters remotely
○ Support for advanced search algorithms in 

addition to the traditional grid or random 
search algorithms

○ Integrate geographically distributed GPU 
resources to provide a single resource pool to 
end-users

3
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Containerization of the HPO workflow
● SteeringContainer

○ Optimization executed at iDDS server
○ Generate new HP points with customised method

● When to trigger; for example, 80% of points of the current iteration finish
● Number of points to generate per iteration
● When to finish

○ A wide range of HPO methods are supported
● EvaluationContainer

○ ML training at Grid/Cloud/HPC (CPU/GPU) sites
○ Submodule payload contains model definition, training scripts

● User containers
○ Both the SteeringContainer and the EvaluationContainer can be replaced with 

user containers.

4
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HPO for FastCaloGAN
● FastCaloGAN simulation

○ One GAN for a particle type and an 𝜂 range 
(in total 300 GANs) 

○ Hyper parameter optimised for each GAN 
● Bigger networks (due to larger input 

dimensions)
● High batchsize

○ 100 GPU-days to train 300 GANs
● Applied HPO for FastCaloGAN

○ Applied for ATLAS FastCaloGAN, part of the 
production ATLAS fast simulation AtlFast3

○ Ref: FastCaloGAN, AML workshop, IML, 
ATLAS S&C week

5AtlFast3

GAN

https://indico.cern.ch/event/1039582/contributions/4427659/attachments/2272299/3859340/FCG20210628.pdf
https://indico.cern.ch/event/1014398/contributions/4307720/attachments/2225299/3769097/AML20210413.pdf
https://indico.cern.ch/event/1015407/contributions/4261880/attachments/2209425/3738987/IMLHPO20210316.pdf
https://indico.cern.ch/event/1040142/contributions/4397646/subcontributions/341341/attachments/2265418/3846367/ComputingWF20210616.pdf
https://link.springer.com/article/10.1007/s41781-021-00079-7
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A New iWorkflow Management (Function-as-a-Task) in iDDS

6

● Challenges for complex workflow management
○ Complicated to support different logical requirements in 

different use cases
○ Complicated for users to define different dependency 

logics
■ Eg. easy to make mistakes between user requirements 

and system behaviors when a complicated logic is defined
○ Complicated for user experience

■ Difficult to convert some user software stack to other 
workflow management tools

■ User preference is important
● A new iWorkflow Management framework is 

developed
○ With python functions to define the workflow steps
○ With python decorators to convert functions to distributed 

tasks
○ Workflow executes python tasks like local functions, 

transparent to users
○ AsyncResult supports with messaging service (ActiveMQ)
○ Simplify the workflow usage for users

With python decorator @work to convert a function to a 
PanDA task

The Workflow calls the task like a local function, 
transparent to users
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Example: new HPO with iWorkflow
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● Apply iWorkflow for a HPO example analysis
○ ttH analysis (simulated events with Delphes)
○ Boosted Decision Tree (BDT): xgboost
○ Bayesian based hyperparameter optimization: bayes_opt

● Base container
○ Alma9 Singularity container with installed xgboost, bayes_opt

● Distributed tasks
○ With one line python decorator ‘@work(map_results=True)’ to 

convert local functions to distributed tasks
○ Transparent for users to run function as remote tasks and 

collect results

One example workflow: (1) workflow function; (2) 5 
iterations and 20 parallel jobs per iteration

The workflow function

The work function

https://xgboost.readthedocs.io/en/stable/
https://github.com/bayesian-optimization/BayesianOptimization/tree/master
https://panda-doma.cern.ch/tasks/?idds_request_id=6126
https://panda-doma.cern.ch/tasks/?idds_request_id=6126


FY 2022 National Laboratory Energy Frontier Research Program Review                                                          W. Guan                      CCE-Scaling ML  2024.04.18

Apply iWorkflown for AI-assisted Detector Design for EIC (AID2E)
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● Objectives
○ Employ PanDA/iDDS to manage AI-assisted Detector Design 

parameter optimization tasks on distributed resources
○ Large scale distributed machine learning
○ Fine-grained automation of multi-step iterative workflows

● AI-assisted parameter optimization
○ Many Parameters, multiple detector design objectives

■ Multiple Objective Bayesian Optimization (MOBO)
● Challenges

○ AID2E has similarities to existing supported workflows
■ HPO (MOBO)

○ AID2E MOBO using AX Adaptive Experiment Platform (pyTorch 
based), difficult to convert it to workflow description language 
like CWL (Common Workflow Language) or shakemake

● Integration
○ Successful integrated with AID2E Closure-Test-2.

● Containerization
○ The container includes packages such as AX, pytorch, 

botorch, which is needed by this test.
○ Todo: to apply the EIC simulation container

https://ax.dev/
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Conclusion and Next
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● PanDA/iDDS has supported complex workflow management for a 
long time
○ Various use cases are supported in production
○ Multiple experiments (ATLAS, Rubin, EIC/AID2E, …)
○ Complex workflows are supported, using different workflow 

descriptions (Snakemake, CWL, iWorkflow)
● In the future we will improve the structure to support more use 

cases and platforms
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Backups
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Workflow Management in PanDA/iDDS
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● Workflow Management
○ Coordinate and orchestrate tasks and data
○ Streamline operations into a workflow, to improve 

automation and efficiency
● Workflows

○ N x M dependencies between upstream and 
downstream tasks

○ Conditional branching for downstream task 
execution depending on the results of 
upstream tasks

○ Loop of task chain based on the results of 
previous iterations

■ Eg: HPO
● Supported workflow description languages

○ Common Workflow Language (CWL), snakemake, …

Examples of data flow based workflow: Even Gen -> Simul 
-> Reco -> Deriv

An example of A DAG workflow
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Distributed Workflow Management Use Cases
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● Started workflow integration in PanDA and iDDS for a long time, various 
use cases in production, processing a lot of data and different physics 
analysis

○ Fine-grained Data Carousel for LHC ATLAS 
○ DAG management for Rubin Observatory to sequence data processing
○ Distributed HyperParameter Optimization (HPO)
○ Monte Carlo Toy based Confidence Limits
○ Active Learning assisted technique to boost the parameter search in New 

Physics search space
● Currently developing

○ AI-assisted Detector Design for EIC (AID2E)
■ A new Function-as-a-Task workflow implementation
■ An enhancement of the HPO mechanism
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AI-assisted Detector Design for EIC (AID2E)
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Cristiano Fanelli

● Objectives
○ Employ PanDA/iDDS to manage AI-assisted Detector Design 

parameter optimization tasks on distributed resources
○ Large scale distributed machine learning
○ Fine-grained automation of multi-step iterative workflows

● AI-assisted parameter optimization
○ Many Parameters, multiple detector design objectives

■ Multiple Objective Bayesian Optimization (MOBO)
● Challenges

○ AID2E has similarities to existing supported workflows
■ HPO (MOBO)
■ Analysis and combined performance (iterative multiple 

stages with widely varying characteristics, from full Geant4 
simulation to MOBO optimization) 

○ AID2E MOBO using AX Adaptive Experiment Platform (pyTorch 
based)

○ Adapting existing AID2E software stack to PanDA/iDDS
○ To ease the adaptation to PanDA/iDDS, developing a python 

decorator mechanism to convert functions to iDDS tasks
○ Function-as-a-Task workflow management in iDDS (next 

slides)

https://indico.bnl.gov/event/19560/contributions/83254/
https://ax.dev/
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iWorkflow Management Schema
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● Workflow
○ Source codes caching

■ workflow as the basic unit to manage source codes
■ Source codes in the workflow directory will be uploaded into the iDDS or 

PanDA http cache
■ During running time, the source codes will be downloaded to the current 

running directory
○ Running environment

■ Base environment (eg: cvmfs) + source codes caching
■ Base container  + source codes caching

● Container for user, ShuWei, Ye, 2024 ATLAS S&C

● Work
○ Submit function as tasks/jobs to workload management system PanDA
○ Load and run a function as a job at distributed sites
○ List of parameters can be used to call a function, which will create a task with 

multiple jobs and every job uses item of the list of parameters

● AsyncResults
○ When a function finishes, the ‘Work’ executor will publish the result in a 

message
○ The ‘Work’ at submission side will receive the result

● iDDS also monitors the tasks/jobs submitted. It 
will publish messages to AsyncResult, to avoid 
AsyncResult waiting for failed remote workers

Schema of how a workflow executes a function at remote 
distributed resources

https://indico.cern.ch/event/1340782/timetable/#23-containers-for-users
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iWorkflow Management Advantages
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● Source codes are managed transparently, no additional steps
● Support different ways to run user functions at distributed resources

○ With/without container
○ With base container + source codes caching, users don’t need to build the 

container for a code update, the workflow will automatically update the 
source codes in the cache

○ For some experiments, different base containers are already provided and 
deployed on cvmfs. Users don’t need to build personal containers

● Make use of the current PanDA structure and related middlewares, no additional 
requirements for sites

● Distributed resources, possible to large scale
● AsyncResults based on messaging service improves the efficiency
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Example: Hyperparameter Optimization
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● Apply Function-as-a-Task for 
hyperparameter optimization

● Example analysis
○ ttH analysis (simulated events with Delphes)
○ Boosted Decision Tree (BDT): xgboost
○ Bayesian based hyperparameter optimization: bayes_opt

● Base container
○ Alma9 Singularity container with installed xgboost, bayes_opt

● Distributed tasks
○ With one line python decorator ‘@work(map_results=True)’ 

to convert local functions to distributed tasks
○ Transparent for users to run function as remote tasks and 

collect results
○ List of parameters is provided to generate multiple jobs in a 

task
○ Singularity container is used as the base container

With python decorator to transparently convert function to 
distributed tasks and collect the results transparently. 
sources 

https://xgboost.readthedocs.io/en/stable/
https://github.com/bayesian-optimization/BayesianOptimization/tree/master
https://github.com/wguanicedew/iDDS/blob/dev/main/lib/idds/tests/test_iworkflow/optimize_iworkflow.py
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Example: Hyperparameter Optimization Test Examples
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● Test workflows with different iterations
○ Every iteration is mapped to one panda task
○ In every iteration, multiple hyperparameters are generated. As a result, multiple jobs are generated in a task

Iterations: this workflow has 10 
iterations

Jobs per iteration: this iteration 
has 20 jobs

Workflow: Group tasks together
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Fine-grained Data Carousel for LHC ATLAS
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Since late 2021, ATLAS Data Carousel has processed 942 
PB data (old monitor information are archived)

● Fine-grained Data Carousel for 
LHC ATLAS enables processing in 
proper granularities and grouping 
to efficiently use disk storage
○ iDDS employs messages to trigger 

PanDA processing data in proper 
granularity, instead of per dataset

○ In production since 2020
○ From 2021, has processed 942 PB 

data (old processing information  
has been archived)

https://aipanda181.cern.ch/monitor/transform.html
https://aipanda181.cern.ch/monitor/transform.html
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DAG management for Rubin Observatory
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From May 2021 to May 2022  in Rubin Observatory, iDDS-PanDA 
within the LSST framework has processed more than 11000 tasks.

● DAG management for Rubin Observatory to 
sequence data processing based on 
dependencies since 2020

○ Largely stable since Oct 2021
○ DP0.2 (Phase 2 of Data Preview 0) campaign 

successfully, 2022
○ HSC (Hyper-Suprime Cam) processing, 2022
○ Dedicated PanDA/iDDS deployed at SLAC for 

Rubin production, 2023
■ Multiple Data Facilities (DF)

■ USDF (SLAC), FrDF (IN2P3), UKDF 
(RAL&LANCS)

■ Kubernetes based deployment
■ Postgres database

Since middle of last year, the USDF PanDA starts production. It has 
processed about 2000 workflows (every workflow can have 5~10 tasks

https://aipanda016.cern.ch/monitor/dashboard.html
https://aipanda016.cern.ch/monitor/dashboard.html
https://usdf-panda-bigmon.slac.stanford.edu:8443/idds/wfprogress/?days=200
https://usdf-panda-bigmon.slac.stanford.edu:8443/idds/wfprogress/?days=200
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Distributed HyperParameter Optimization (HPO)

● Provide a full-automated platform for HPO on 
top of distributed heterogeneous computing 
resources

○ Hyperparameters are generated centrally in iDDS
○ PanDA schedules ML training jobs to distributed heterogeneous 

GPUs to evaluate the performance of the hyperparameter
○ iDDS orchestrates to collects the results and search new 

hyperparameters based on the previous results

● Applied for ATLAS FastCaloGAN
○ The HPO service is in production for FastCaloGAN, part of the 

production ATLAS fast simulation AtlFast3
○ With hyperparameters to tune various models targeting different 

particles and  𝜂 slices
○ Distributed GPUs, HPCs, commercial cloud
○ Ref: FastCaloGAN, AML workshop, IML, ATLAS S&C week

● Used in ATLAS, however not specific to 
ATLAS

❖ Ref: CHEP2023

20

https://indico.cern.ch/event/1039582/contributions/4427659/attachments/2272299/3859340/FCG20210628.pdf
https://indico.cern.ch/event/1014398/contributions/4307720/attachments/2225299/3769097/AML20210413.pdf
https://indico.cern.ch/event/1015407/contributions/4261880/attachments/2209425/3738987/IMLHPO20210316.pdf
https://indico.cern.ch/event/1040142/contributions/4397646/subcontributions/341341/attachments/2265418/3846367/ComputingWF20210616.pdf
https://indico.jlab.org/event/459/contributions/11472/
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Monte Carlo Toy based Confidence Limits

● Confidence Limits in Analyses
○ Exclude some ranges of relevant phase space for future processing
○ Show that obtained results are meaningfully different from what could have obtained by 

chance

● An Monte Carlo (MC) Toy based confidence limits workflow 
requires multiple steps of grid scans, where the current step 
depends on the previous steps

● Automate the workflow of Toy limits calculation and 
aggregation

○ Point of Interest (POI) generation based on the search space and results aggregation to 
generate new POIs in iDDS

○ Distributed Toy limits calculation to distributed resources with PanDA

● Ref: CHEP2023
21

https://indico.jlab.org/event/459/contributions/11472/


FY 2022 National Laboratory Energy Frontier Research Program Review                                                          W. Guan                      CCE-Scaling ML  2024.04.18

Active Learning for ATLAS

● An iterative ML assisted technique to boost the 
parameter search in New Physics search space
○ The Active Learning technique we are applying was developed by Kyle 

Cranmer et al, “Active Learning for Excursion Set Estimation”, ACAT 
2019

○ Automate the multi-steps parameter redefining and evaluation chain
○ Integrated REANA (Reusable Analyses) with PanDA/iDDS for learning 

processing

● Applied the Active Learning service in the H → ZZd 
→ 4ℓ dark sector analysis
○ Apply Bayesian Optimization to refine the parameter space
○ Greater efficiency, scalability, automation enables a wider parameter search 

(instead of 1D, 2D or even 4D on large scale resources) and improved physics 
result

○ Has demonstrated active learning driven re-analysis for dark sector analysis
○ ATLAS PUB NOTE in progress

22

R. Zhang

CHEP2023 Talk: C. Waber, et al. An Active Learning application in a dark 
matter search with ATLAS PanDA and iDDS

https://indico.jlab.org/event/459/contributions/11577/
https://indico.jlab.org/event/459/contributions/11577/
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Thanks


