

PanDA/iDDS HPO workflows

Wen Guan, Lino Gerlach, Tadashi Maeno, Torre Wenaus on behalf of the PanDA/iDDS team

CCE-SML April 18 2024

@BrookhavenLab

PanDA/iDDS

- PanDA (Production and Distributed Analysis): Distributed workload Management
 - Distributed users
 - Distributed computing resources
 - General interface for users, one authentication for all sites
 - Integrated different computing resources (Grid, Cloud, k8s, HPC and so on), hide diversities from users, large scale
- iDDS (intelligent Data Delivery Service):
 Workflow management orchestration
 - DAG (Directed Acyclic Graph)
 - Complex workflow
 - Asynchronous results

PanDA/iDDS

- Distributed HyperParameter Optimization (HPO)
 - Provide a full-automated platform for HPO on top of distributed heterogeneous computing resources
 - iDDS orchestrates hyperparameter generation and results collection; automation
 - PanDA evaluates hyperparameters remotely
 - Support for advanced search algorithms in addition to the traditional grid or random search algorithms
 - Integrate geographically distributed GPU resources to provide a single resource pool to end-users

Containerization of the HPO workflow

SteeringContainer

- Optimization executed at iDDS server
- Generate new HP points with customised method
 - When to trigger; for example, 80% of points of the current iteration finish.
 - Number of points to generate per iteration
 - When to finish
- A wide range of HPO methods are supported

EvaluationContainer

- ML training at Grid/Cloud/HPC (CPU/GPU) sites
- Submodule payload contains model definition, training scripts

User containers

 Both the SteeringContainer and the EvaluationContainer can be replaced with user containers.

HPO for FastCaloGAN

FastCaloGAN simulation

- One GAN for a particle type and an η range (in total 300 GANs)
- Hyper parameter optimised for each GAN
 - Bigger networks (due to larger input dimensions)
 - High batchsize
- 100 GPU-days to train 300 GANs

Applied HPO for FastCaloGAN

- Applied for ATLAS FastCaloGAN, part of the production ATLAS fast simulation AtlFast3
- Ref: <u>FastCaloGAN</u>, <u>AML workshop</u>, <u>IML</u>, ATLAS S&C week

GAN

A New iWorkflow Management (Function-as-a-Task) in iDDS

- Challenges for complex workflow management
 - Complicated to support different logical requirements in different use cases
 - Complicated for users to define different dependency logics
 - Eg. easy to make mistakes between user requirements and system behaviors when a complicated logic is defined
 - Complicated for user experience
 - Difficult to convert some user software stack to other workflow management tools
 - User preference is important
- A new iWorkflow Management framework is developed
 - With python functions to define the workflow steps
 - With python decorators to convert functions to distributed tasks
 - Workflow executes python tasks like local functions, transparent to users
 - AsyncResult supports with messaging service (ActiveMQ)

```
CE-Scaling ML 2024.04.18
```

```
@work(map_results=True)
def optimize_work(opt_params):
```

With python decorator **@work** to convert a function to a PanDA task

```
@workflow
def optimize_workflow():
    from optimize import evaluate_bdt, get_bayesian_optimizer_and_util
    ...
    n_iterations, n_points_per_iteration = 10, 20
    for i in range(n_iterations):
        points = {}
        group_kwargs = []
        for j in range(n_points_per_iteration):
            x_probe = bayesopt.suggest(util)
            u_id = get_unique_id_for_dict(x_probe)
            print('x_probe (%s): %s' % (u_id, x_probe))
            points[u_id] = {'kwargs': x_probe}
            group_kwargs.append(x_probe)
```

```
results = optimize_work(opt_params=params, group_kwargs=group_kwargs)
print("points: %s" % str(points))
```

The Workflow calls the task like a local function, transparent to users

Example: new HPO with iWorkflow

- Apply iWorkflow for a HPO example analysis
 - ttH analysis (simulated events with Delphes)
 - Boosted Decision Tree (BDT): xgboost
 - Bayesian based hyperparameter optimization: bayes opt
- Base container
 - Alma9 Singularity container with installed xgboost, bayes_opt
- Distributed tasks
 - With one line python decorator '@work(map_results=True)' to convert local functions to distributed tasks
 - Transparent for users to run function as remote tasks and collect results

The work function

The workflow function

One example workflow: (1) workflow function; (2) 5 iterations and 20 parallel jobs per iteration

Best params: {'target': 0.960055699094351, 'params': {'alpha': 0.23406035151804216, 'colsample_bytree': 0.579042534809806, 'eta': 0.028600368999834338, 'gamma': 0.23818222147295043, 'max_delta_step': 0.8490976659073024, 'max_depth': 19.211553258551916, 'min_child_weight': 70.89679426305557, 'scale_pos_weight': 0.41080827258102803, 'seed': 47.50122115129428, 'subsample': 0.9416281815903255}}

Apply iWorkflown for Al-assisted Detector Design for EIC (AID2E)

Objectives

- Employ PanDA/iDDS to manage Al-assisted Detector Design parameter optimization tasks on distributed resources
- Large scale distributed machine learning
- Fine-grained automation of multi-step iterative workflows

Al-assisted parameter optimization

- o Many Parameters, multiple detector design objectives
 - Multiple Objective Bayesian Optimization (MOBO)

Challenges

- AID2E has similarities to existing supported workflows
 - HPO (MOBO)
- AID2E MOBO using <u>AX Adaptive Experiment Platform</u> (pyTorch based), difficult to convert it to workflow description language like CWL (Common Workflow Language) or shakemake

Integration

Successful integrated with AID2E Closure-Test-2.

Containerization

- The container includes packages such as AX, pytorch, botorch, which is needed by this test.
- Todo: to apply the EIC simulation container

Conclusion and Next

- PanDA/iDDS has supported complex workflow management for a long time
 - Various use cases are supported in production
 - Multiple experiments (ATLAS, Rubin, EIC/AID2E, ...)
 - Complex workflows are supported, using different workflow descriptions (Snakemake, CWL, iWorkflow)
- In the future we will improve the structure to support more use cases and platforms

Backups

ACAT March 2024

Workflow Management in PanDA/iDDS

Workflow Management

- Coordinate and orchestrate tasks and data
- Streamline operations into a workflow, to improve automation and efficiency

Workflows

- N x M dependencies between upstream and downstream tasks
- Conditional branching for downstream task execution depending on the results of upstream tasks
- Loop of task chain based on the results of previous iterations
 - Eg: HPO

Supported workflow description languages

o Common Workflow Language (CWL), snakemake, ...

Examples of data flow based workflow: Even Gen -> Simul -> Reco -> Deriv

An example of A DAG workflow

Distributed Workflow Management Use Cases

- Started workflow integration in PanDA and iDDS for a long time, various use cases in production, processing a lot of data and different physics analysis
 - Fine-grained Data Carousel for LHC ATLAS
 - DAG management for Rubin Observatory to sequence data processing
 - Distributed HyperParameter Optimization (HPO)
 - Monte Carlo Toy based Confidence Limits
 - Active Learning assisted technique to boost the parameter search in New Physics search space
- Currently developing
 - Al-assisted Detector Design for EIC (AID2E)
 - A new Function-as-a-Task workflow implementation
 - An enhancement of the HPO mechanism

Al-assisted Detector Design for EIC (AID2E)

Objectives

- Employ PanDA/iDDS to manage Al-assisted Detector Design parameter optimization tasks on distributed resources
- Large scale distributed machine learning
- Fine-grained automation of multi-step iterative workflows

Al-assisted parameter optimization

- Many Parameters, multiple detector design objectives
 - Multiple Objective Bayesian Optimization (MOBO)

Challenges

- AID2E has similarities to existing supported workflows
 - HPO (MOBO)
 - Analysis and combined performance (iterative multiple stages with widely varying characteristics, from full Geant4 simulation to MOBO optimization)
- AID2E MOBO using <u>AX Adaptive Experiment Platform</u> (pyTorch based)
- Adapting existing AID2E software stack to PanDA/iDDS
- To ease the adaptation to PanDA/iDDS, developing a python decorator mechanism to convert functions to iDDS tasks
- Function-as-a-Task workflow management in iDDS (next slides)

Cristiano Fanelli

iWorkflow Management Schema

Workflow

- Source codes caching
 - workflow as the basic unit to manage source codes
 - Source codes in the workflow directory will be uploaded into the iDDS or PanDA http cache
 - During running time, the source codes will be downloaded to the current running directory
- o Running environment
 - Base environment (eg: cvmfs) + source codes caching
 - Base container + source codes caching
 - Container for user, ShuWei, Ye, 2024 ATLAS S&C

Work

- Submit function as tasks/jobs to workload management system PanDA
- Load and run a function as a job at distributed sites
- List of parameters can be used to call a function, which will create a task with multiple jobs and every job uses item of the list of parameters

AsyncResults

- When a function finishes, the 'Work' executor will publish the result in a message
- The 'Work' at submission side will receive the result
- iDDS also monitors the tasks/jobs submitted. It will publish messages to AsyncResult, to avoid AsyncResult waiting for failed remote workers

Schema of how a workflow executes a function at remote distributed resources

iWorkflow Management Advantages

- Source codes are managed transparently, no additional steps
- Support different ways to run user functions at distributed resources
 - With/without container
 - With base container + source codes caching, users don't need to build the container for a code update, the workflow will automatically update the source codes in the cache
 - For some experiments, different base containers are already provided and deployed on cvmfs. Users don't need to build personal containers
- Make use of the current PanDA structure and related middlewares, no additional requirements for sites
- Distributed resources, possible to large scale
- AsyncResults based on messaging service improves the efficiency

Example: Hyperparameter Optimization

- Apply Function-as-a-Task for hyperparameter optimization
- Example analysis
 - ttH analysis (simulated events with Delphes)
 - Boosted Decision Tree (BDT): <u>xqboost</u>
 - Bayesian based hyperparameter optimization: <u>bayes_opt</u>
- Base container
 - Alma9 Singularity container with installed xgboost, bayes_opt
- Distributed tasks
 - With one line python decorator '@work(map_results=True)' to convert local functions to distributed tasks
 - Transparent for users to run function as remote tasks and collect results
 - List of parameters is provided to generate multiple jobs in a task
 - Singularity container is used as the base container

```
@work(map_results=True)
                                                                                     input_weight=None, **kwargs):
            from optimize import evaluate_bdt, load_data
            data, label = load data()
            train, val = data
            y train cat, y val cat = label
            input_x = [train, val]
            input_y = [y_train_cat, y_val_cat]
            ret = evaluate_bdt(input_x=input_x, input_y=input_y, opt_params=opt_params, retMethod=retMethod, hist=hist,
                                saveModel=saveModel, input weight=input weight, **kwargs)
63
            return ret
           bayesopt, util = get_bayesian_optimizer_and_util(optFunc, opt_params)
           n iterations, n points per iteration = 10, 20
           for i in range(n iterations):
               print("Iteration %s" % i)
               points = {}
               group kwargs = []
               for j in range(n points per iteration):
                   x_probe = bayesopt.suggest(util)
                   u_id = get_unique_id_for_dict(x_probe)
                   print('x_probe (%s): %s' % (u_id, x_probe))
                   points[u_id] = {'kwargs': x_probe}
                   group kwargs.append(x probe)
               results = optimize_work(opt_params=params, opt_method=opt_method, hist=True, saveModel=False, input_weight=None
                                      retMethod=opt_method, group_kwargs=group_kwargs)
               print("points: %s" % str(points))
               for u_id in points:
                   points[u_id]['ret'] = results.get_result(name=None, args=points[u_id]['kwargs'])
                  print('ret :%s, kwargs: %s' % (points[u_id]['ret'], points[u_id]['kwargs']))
                   bayesopt.register(points[u_id]['kwargs'], points[u_id]['ret'])
           print(bavesopt.res)
           p = bavesopt.max
init_env = 'singularity exec /afs/cern.ch/user/w/wguan/workdisk/iDDS/test/eic/idds_ml_al9.simg
```

wf = Workflow(func=optimize_workflow, service='idds', init_env=init_env)

With python decorator to transparently convert function to CCE-Scaling ML 2024.04.1 distributed tasks and collect the results transparently. sources

Example: Hyperparameter Optimization Test Examples

Test workflows with different iterations

Workflow: Group tasks together

• Every iteration is mapped to one panda task

o In every iteration, multiple hyperparameters are generated. As a result, multiple jobs are generated in a task

request id	username 🏺	workflow status	graph 🏺	workflow name		on (UTC)	total tasks	tasks 🍦	transform type	total files	released files	unreleased files	finished files	ф ¹	
6128	Wen Guan	Finished	plot	optimize_iworkflow.optimize_workflow_2024_03_06	13_18_47	2024-03- 06 13:18:47	11	Finished(10)	N/A	C	0		100%	%	
6127	Wen Guan	Finished	plot	optimize_iworkflow.optimize_workflow_2024_03_06_	13_18_41	2024-03- 06 13:18:45	11	Finished(10)	N/A	C	0	(0 100%	%	
6126	Wen Guan	Finished	plot	optimize_iworkflow.optimize_workflow_2024_03_06_	08_55_01	2024-03- 06 08:55:04	6	Finished(5)	N/A	C	0		0 100%	%	
6125	Wen Guan	Finished	plot	optimize_iworkflow.optimize_workflow_2024_03_06_	08_54_32	2024-03- 06 08:54:36	3	Finished(2)	N/A	C	0		100%	%	
tasks, sor	tasks, sorted by jeditaskid-desc														
ID Parent	Task name TaskType/ProcessingType Campaign Group User Errors Logged status					Input fil Nlost 6 Nfinish Nfail %	%	Iterations: this workflow has 10							
	optimize_iworkflow.optimize_iworkflow.optimize_work_2024_03_06_11_12_39_6125_47808 iDDS Wen Guan Errors				done 20	20 100%	6 İ	teratio	ns						
168804	optimize_iworkflow.optimize_work_2024_03_06_08_57_10_6125_47805 iDDS Wen Guan Errors				done 20	20 100%	6	Jobs r	er iter	atio	n: this	iterati	on		
168801	optimize_iworkflow.optimize_workflow_2024_03_06_08_54_32_6125 iDDS Wen Guan Errors				done 1	1 100%		Jobs per iteration: this iteration has 20 jobs							

Fine-grained Data Carousel for LHC ATLAS

- Fine-grained Data Carousel for LHC ATLAS enables processing in proper granularities and grouping to efficiently use disk storage
 - iDDS employs messages to trigger PanDA processing data in proper granularity, instead of per dataset
 - In production since 2020
 - From 2021, has processed 942 PB data (old processing information has been archived)

<u>Since late 2021, ATLAS Data Carousel has processed 942</u>
<u>PB data</u> (old monitor information are archived)

DAG management for Rubin Observatory

- **DAG** management for **Rubin Observatory** to sequence data processing based on dependencies since 2020
 - Largely stable since Oct 2021
 - DP0.2 (Phase 2 of Data Preview 0) campaign successfully, 2022
 - HSC (Hyper-Suprime Cam) processing, 2022
 - Dedicated PanDA/iDDS deployed at SLAC for Rubin production, 2023
 - Multiple Data Facilities (DF)
 - USDF (SLAC), FrDF (IN2P3), UKDF (RAL&LANCS)
 - Kubernetes based deployment
 - Postgres database

From May 2021 to May 2022 in Rubin Observatory, iDDS-PanDA within the LSST framework has processed more than 11000 tasks

Distributed HyperParameter Optimization (HPO)

- Provide a full-automated platform for HPO on top of distributed heterogeneous computing resources
 - Hyperparameters are generated centrally in iDDS
 - PanDA schedules ML training jobs to distributed heterogeneous
 GPUs to evaluate the performance of the hyperparameter
 - iDDS orchestrates to collects the results and search new hyperparameters based on the previous results
- Applied for ATLAS FastCaloGAN
 - The HPO service is in production for FastCaloGAN, part of the production ATLAS fast simulation AtlFast3
 - With hyperparameters to tune various models targeting different particles and slices
 - Distributed GPUs, HPCs, commercial cloud
 - Ref: <u>FastCaloGAN</u>, <u>AML workshop</u>, <u>IML</u>, <u>ATLAS S&C week</u>
- Used in ATLAS, however not specific to ATLAS
- Ref: <u>CHEP2023</u>

R. Zhang 5th ATLAS Machine Learning Workshop

Monte Carlo Toy based Confidence Limits

- Confidence Limits in Analyses
 - Exclude some ranges of relevant phase space for future processing
 - Show that obtained results are meaningfully different from what could have obtained by chance
- An Monte Carlo (MC) Toy based confidence limits workflow requires multiple steps of grid scans, where the current step depends on the previous steps
- Automate the workflow of Toy limits calculation and aggregation
 - Point of Interest (POI) generation based on the search space and results aggregation to generate new POIs in iDDS 21
 - Distributed Toy limits calculation to distributed resources with PanDA
- Ref: CHEP2023

Active Learning for ATLAS

- An iterative ML assisted technique to boost the parameter search in New Physics search space
 - The Active Learning technique we are applying was developed by Kyle Cranmer et al, "Active Learning for Excursion Set Estimation", ACAT 2019
 - Automate the multi-steps parameter redefining and evaluation chain
 - Integrated REANA (Reusable Analyses) with PanDA/iDDS for learning processing
- Applied the Active Learning service in the H → ZZ_d
 → 4ℓ dark sector analysis
 - Apply Bayesian Optimization to refine the parameter space
 - Greater efficiency, scalability, automation enables a wider parameter search (instead of 1D, 2D or even 4D on large scale resources) and improved physics result
 - Has demonstrated active learning driven re-analysis for dark sector analysis
 - ATLAS PUB NOTE in progress

CHEP2023 Talk: C. Waber, et al. An Active Learning application in a dark matter search with ATLAS PanDA and iDDS

Thanks

ACAT March 2024 23