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Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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Deconvolution (“unfolding”): 
correcting for detector effects

Key aspect of all cross section 
measurements, across particle/

nuclear/astro physics (!)

Why “unfold” instead of “fold”?
Unfolding is ill-posed, BUT only 

way to compare different 
experiments and to compare with 

non fully exclusive predictions.  
Data also survive much longer.
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into O(10) binŝT ≈ R−1M
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Inference-Aware Binning
Optimal binning depends on 

downstream task. Not possible 
with current setup.

What about moments?
(see also K. Desai, BPN, J. Thaler, [paper]) 

https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_43.pdf
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Inference-Aware Binning
Derivative MeasurementsOptimal binning depends on 

downstream task. Not possible 
with current setup.

What about moments?
(see also K. Desai, BPN, J. Thaler, [paper]) 

With binned measurements, 
essentially impossible to re-
use results for a function of 

the phase space.

https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_43.pdf
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Inference-Aware Binning
Derivative Measurements

Higher Dimensions

Optimal binning depends on 
downstream task. Not possible 

with current setup.

What about moments?
(see also K. Desai, BPN, J. Thaler, [paper]) 

With binned measurements, 
essentially impossible to re-
use results for a function of 

the phase space.

Some phenomena can’t be 
probed in a few dimensions.  

What about observables that 
are not per-event?

https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_43.pdf
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Classifier-Based Methods

Learn (unfolded) data 
likelihood ratio w.r.t. simulation

For references, see JINST 17 (2022) P01024, 2109.13243 (and papers that cite it!)
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Density-Based MethodsClassifier-Based Methods

Learn (unfolded) data probably 
density implicitly or explicitly.

Learn (unfolded) data 
likelihood ratio w.r.t. simulation

For references, see JINST 17 (2022) P01024, 2109.13243 (and papers that cite it!)
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I won’t talk about these at all, but 
there has been a lot of work with 
GANs, VAEs, NFs, Diffusion…

GANs: K. Datta, D. Kar, D. Roy, 1806.00433;  
M. Bellagente, A. Butter, G. Kasieczka, T. Plehn,  
R. Winterhalder, SciPost Phys. 8 (2020) 070, …

VAEs: J. Howard, S. Mandt, D. Whiteson, Y. Yang, 
Sci. Rep. 12 (2022) 7567, …

NFs: M. Bellagente et al., SciPost Phys. 9 (2020) 074; 
M. Vandegar, M. Kagan, A. Wehenkel, G. Louppe, 

PMLR 11 (2021) 2107; M. Backes, A. Butter,  
M. Dunford, B. Malaescu, 2212.08674, …

Diffusion: A. Shmakov et al., 2305.10399; 
 S. Diefenbachar, G. Liu, V. Mikuni, B. Nachman, W. Nie, 2308.12351
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Classifier-Based Methods

Learn (unfolded) data 
likelihood ratio w.r.t. simulation

For references, see JINST 17 (2022) P01024, 2109.13243 (and papers that cite it!)

Learn a small correction 
(start close to the right answer)

I’ll focus here today because:

~prior independent
(if maximum likelihood) 

& My focus will be on a 
method called OmniFold.
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001

Simulation

Sy
nt
he
ti
c

N
at
ur
al

Measured

Data

Ideal

Generation

TruthSimulation

Sy
nt
he
ti
c

N
at
ur
al

Measured

Data

Ideal

Generation

Truth

Full phase-space unfolding 
30



3

0.00

0.01

0.02

0.03

0.04

0.05

0.06

N
or

m
al

iz
ed

C
ro

ss
S
ec

ti
on

[G
eV

�
1
]

D/T: Herwig 7.1.5 default
S/G: Pythia 8.243 tune 26
Delphes 3.4.2 CMS Detector
Z+jet: pZ

T > 200 GeV, R = 0.4

“Data”

Sim.

IBU m

“Truth”

Gen.

OmniFold

0 20 40 60

Jet Mass m [GeV]

0.85

1.0

1.15

R
at

io
to

T
ru

th

0.00

0.01

0.02

0.03

0.04

0.05

0.06

N
or

m
al

iz
ed

C
ro

ss
S
ec

ti
on

D/T: Herwig 7.1.5 default
S/G: Pythia 8.243 tune 26
Delphes 3.4.2 CMS Detector
Z+jet: pZ

T > 200 GeV, R = 0.4

“Data”

Sim.

IBU M

“Truth”

Gen.

OmniFold

0 20 40 60 80
Jet Constituent Multiplicity M

0.85

1.0

1.15
R

a
ti
o

to
T
ru

th

0

2

4

6

8

10

N
or

m
al

iz
ed

C
ro

ss
S
ec

ti
on

D/T: Herwig 7.1.5 default
S/G: Pythia 8.243 tune 26
Delphes 3.4.2 CMS Detector
Z+jet: pZ

T > 200 GeV, R = 0.4

“Data”

Sim.

IBU w

“Truth”

Gen.

OmniFold

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Jet Width w

0.85

1.0

1.15

R
at

io
to

T
ru

th

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
or

m
al

iz
ed

C
ro

ss
S
ec

ti
on

D/T: Herwig 7.1.5 default
S/G: Pythia 8.243 tune 26
Delphes 3.4.2 CMS Detector
Z+jet: pZ

T > 200 GeV, R = 0.4

“Data”

“Truth”

Sim.

Gen.

IBU ln ⇢

OmniFold

�14 �12 �10 �8 �6 �4 �2
Soft Drop Jet Mass ln ⇢

0.85

1.0

1.15

R
a
ti
o

to
T
ru

th

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

C
ro

ss
S
ec

ti
on

D/T: Herwig 7.1.5 default
S/G: Pythia 8.243 tune 26
Delphes 3.4.2 CMS Detector
Z+jet: pZ

T > 200 GeV, R = 0.4

“Data”

“Truth”

Sim.

Gen.

IBU ⌧ (�=1)
21

OmniFold

0.0 0.2 0.4 0.6 0.8 1.0 1.2

N -subjettiness Ratio ⌧ (�=1)
21

0.85

1.0

1.15

R
at

io
to

T
ru

th

0

2

4

6

8

N
or

m
al

iz
ed

C
ro

ss
S
ec

ti
on

D/T: Herwig 7.1.5 default
S/G: Pythia 8.243 tune 26
Delphes 3.4.2 CMS Detector
Z+jet: pZ

T > 200 GeV, R = 0.4

“Data”

Sim.

IBU zg

“Truth”

Gen.

OmniFold

0.0 0.1 0.2 0.3 0.4 0.5
Groomed Jet Momentum Fraction zg

0.85

1.0

1.15

R
at

io
to

T
ru

th

FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in
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→Physics details in Miguel’s talk

We see excellent closure for the full phase space!OmniFold is:
- Unbinned
- Maximum likelihood*
- Improves the resolution from correlations with 

detector response

In fact, OmniFold can also work on low-level inputs 
(e.g. energy flow particles).  In that case, you can 
construct observables after the measurement. 

*when binned, OmniFold converges to Lucy-
Richardson (aka Iterative Bayesian Unfolding)

Full phase-space unfolding 
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Some technical details
33

Please ask if you are interested, but briefly, OmniFold…

See A. Andreassen et al., ICLR SimDL for details [https://simdl.github.io/files/12.pdf]
https://github.com/hep-lbdl/OmniFold

- Can accommodate backgrounds (unbinned) via neural 
positive reweighing 

- Can accommodate acceptance effects 
- Has a number of choices for how to update weights 

and/or keep track of acceptance effects

https://simdl.github.io/files/12.pdf
https://arxiv.org/abs/2007.11586
https://arxiv.org/abs/2007.11586


First Results
34

I’ll now spend a ~1 minute flashing the 
first unbinned measurement results

There is no time to give the physics 
content justice, so I’ll be brief, but please 
let me know if you have any questions!



Results from H1, LHCb, STAR, …
35

+CMS open data study

https://arxiv.org/pdf/2303.13620.pdf
https://arxiv.org/pdf/2108.12376.pdf
https://arxiv.org/pdf/2307.07718.pdf
https://arxiv.org/pdf/2208.11691.pdf
https://arxiv.org/abs/2205.04459


Future + challenges
36

So far, OmniFold seems to work as designed!   
Exciting to see where this will take us.

There are still some challenges we need to overcome:

• OmniFold is computationally expensive (need to train many 
networks, especially with ensembling to reach precision) 

• How to publish an unbinned result? (all results so far are 
presented as binned) - see 2109.13243.  Breaks HEPData! 

• Modeling/closure uncertainties in high dimensions (not a 
new problem, but perhaps more acute) 

• What about profiling?  See 2302.05390 for a partial solution.
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A simultaneous unbinned di�erential cross section measurement of
twenty-four `+jets kinematic observables with the ATLAS detector

/ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a
diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the
strong force, improve Monte Carlo event generators, and search for deviations from Standard Model
predictions. All previous measurements of / boson production characterize the event properties using
a small number of observables and present the results as di�erential cross sections in predetermined
bins. In this analysis, a machine learning method called O���F��� is used to produce a simultaneous
measurement of twenty-four /+jets observables using 139 fb�1 of proton-proton collisions at

p
B = 13 TeV

collected with the ATLAS detector. Unlike any previous fiducial di�erential cross-section measurement,
this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a
variety of contexts and for new observables to be constructed from the twenty-four measured observables.
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A new measurement paradigm is possible, 
enabled by ML-based unfolding methods

More R&D is required, but in 
parallel, these tools are already 

starting to deliver science results!

We can analyze our 
data holistically and 
future-proof it using 
unbinned techniques

Conclusions and Outlook
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