RESULTS FROM THE BO VERTICAL SLICE TEST FOR MICROBOONE

Ben Jones, MIT

Bo VST Setup

- Bo Vertical Slice Test is a training ground for one slice of the MicroBooNE optical system including:
 - Cryogenic photomultiplier tubes
 - Base electronics
 - Wavelength shifting plate
 - *High voltage system + interlocks*
 - Cables and splitters
 - Readout electronics
 - Cryostat feedthrough
 - Trace impurity monitors
 - Etc...

Experimental Configuration for This Study

Assembly Characterizations for MicroBooNE

Vital inputs to uB detector simulation:

- SPE dark rates
- Saturation point
- System global quantum efficiency
- PMT linearity measurement

Ongoing Physics Studies

- 1. Studies of Michel Electrons as Calibration Sources
- 2. Nitrogen Absorption Length
- 3. Nitrogen Quenching Effects

Ongoing Physics Studies

- 1. Studies of Michel Electrons as Calibration Sources
- 2. Nitrogen Absorption Length
- 3. Nitrogen Quenching Effects

General Idea:

- Source set in one of two possible positions.
- Controlled amounts of N2 injected into the liquid, which will cause both quenching (drop in light production) and absorption (opacity of the liquid).
- We want to measure both effects.
- Quenching affects both positions equally, whereas absorption hinders the further more than the nearer one.
- Light yield of both sources as function of N2 content normalized to initial light yield, giving fractional loss.
- If fractional losses deviate from each other, we see an N2 absorption length effect.
- A future analysis will address the effects of quenching (more extensively studied by other groups) separately.

- PPM amounts of nitrogen are injected into the liquid from a gas canister, charged to a known pressure.
- From known volume of canister and known pressure we can calculate how many ppm we injected.
- Nitrogen concentration monitored in both liquid and gas phases using LDetek8000 N2 monitor
- We also monitor H20 and O2 to ~10ppb precision from the same sample lines.

How do we know we get N2 concentration right?

1) Amount of N2 in liquid agrees with amount injected to within our uncertainty of the injection volume.

2) Measurement from liquid and gas capillaries in agreement with saturation pressure based equilibrium calculation

Stability of 1PE

Understanding the Geometrical Effect

Ray trace to understand expected light yields per percent of absorption at each position

Taking ratio, any quenching effect cancels

Getting a number out...

Now to find how much absorption we get per ppb N2...

Green curve is very linear at these small concentrations, gradient = 0.16

VUV absorption cross sections of nitrogen N₂ at room temperature

Summary + Prospects

- We have measured the effects of nitrogen absorption of 128nm argon scintillation light
- We find that the effect is on the order 0.016% / (ppm cm)
- As well as absorption, we see clear evidence of quenching. We are also actively investigating these effects.
- This is only one of many physics studies we are working on with Bo, for the benefit of MicroBooNE, LBNE and other optical systems.
- We have a lot of great physics to investigate, but we are always happy to hear new ideas!

Backup Slides

Aside: Pulse Shape Discrimination in Action

Contents

1. Prediction of expected GQE

2. Expected Light Yield in Bo

- 3. Extraction of GQE from Bo Data
- 4. Implications for MicroBooNE

What Do We Expect?

 A photon arrives at the TPB plate

What Do We Expect?

- A photon arrives at the TPB plate
- It may be shifted to a visible photon by TPB coating.

Predicting WLS Efficiency

- Is very hard, because to deal with 128nm light you have to use either a vacuum or liquid argon
- And it is ALWAYS very hard to know how many photons you started with.
- Thankfully, some people have fancy equipment to overcome both these problems:

Visible photons out / UV photon in for evaporative TPB

But not all coatings are the same

- Gehman et al use an evaporative coated, pure TPB layer
- When developing the optical system, we found this coating to be very delicate.
- We use a more robust but less efficient coating of TPB in a polystyrene matrix.
- The PS substrate is not transparent to 128nm light, so some light is lost before being shifted to the visible.

Ignarra (MIT)

Comparison of uB plates to evaporative plates in vacuum

0.64 ± 0.11 Performance of uB plate compared to evaporative

What Do We Expect?

- A photon arrives at the TPB plate
- It may be shifted to a visible photon by TPB coating.

What Do We Expect?

- A photon arrives at the TPB plate
- It may be shifted to a visible photon by TPB coating.
- Only some of the emitted rays get to the PMT

Acceptance of Light

- This is more complicated than it seems.
- Different points on the TPB plate will illuminate different parts of the PMT face, and different parts of the PMT face have different acceptances.
- Not only this, but there is also a dependence on incident ray angle
- We don't know any of these dependencies.

Angular Acceptance

- MiniBooNE measured response of tube at different angles to "distant" light source
- Resulting data points were fit to a polynomial in theta
- Each point corresponds to tube illuminated all over front face, but at different angle
- · Can we use this? Sort of...

40

Then its just a question of raytracing

PMT angular + geometrical acceptance

Jones and Toups (MIT

What Do We Expect?

- A photon arrives at the TPB plate
- It may be shifted to a visible photon by TPB coating.
- Only some of the emitted rays get to the PMT
- Of these, only some generate photoelectrons

- MiniBooNE polynomial is normalized to 1 at normal incidence.
- This is the Hamamatsu quoted PMT quantum efficiency.
- QE can be found on spec sheet, wavelength dependent

PMT angular + geometrical acceptance

Predicted GQE

	Our Estimate	Uncertainty	Source	Note on Uncertainty
Absolute WLS efficiency of			Gehman et al,	
evaporative plates	1.18	0.1	arXiv:1104.3259	Error bar from paper
Performance of MicroBooNE				
plates relative to evaporative			Our vacuum spec	Error bar from observed
plates	0.64	0.11	measurements	fluctuations
Forward vs backward emission	0.5	0	Fixed at 50%	No uncertainty
Photomultiplier tube quantum			Averaged Hamamatsu QE over	Plot digitization error (no error
efficiency	0.199	0.002	TPB emission spectrum	bar given)
				Discrepancy between MC
Acceptance of light from plate	0.3	0.03	Ray tracing MC simulations	outputs

Predicted GQE: 2.25% 0.49%

Contents

1. Prediction of expected GQE

2. Expected Light Yield in Bo

3. Extraction of GQE from Bo Data

4. Implications for MicroBooNE

Polonium Disc Source Energy

- Polonium 210 is a pure alpha emitter which produces alphas of 5.3MeV.
- United Nuclear disk sources are produced with a thin plastic coating over chemically plated polonium onto metalDoes this plastic absorb any of the alpha energy?
- Disk source emission spectrum was checked using alpha spectrometer at MIT.

Feb 2013 source: 5313 keV Jan 2013 source: 5309 keV Feb 2012 source: 5309 keV

Scintillation Yield Per Alpha

- Ideal scintillation yield with no E field is 51,000 γ / MeV
- Alpha is nonrelativistic and highly ionizing – quenched by Q = 0.71
- We only collect light in first 50ns. This is 99.99% prompt light and 3% late light. Therefore
 f fast = 0.565

Expected Light Yield at Plate

More ray tracing, should be straightforward enough... • Nope

Try a few options;

System has cylindrical symmetry, so distribution in phi does not matter.

0 < r < 1.5mm : Empty 1.5 < r < 3mm : Uniform source 0 < r < 3mm : Uniform Source 0 < r < 1.5mm : Uniform source 1.5 < r < 3mm : Empty

³⁄₄ of plate area covered

Full plate area covered

1/4 of plate area covered

Do we need to marginalize over this?

- Thankfully, in this case we are lucky.
- You will see later that we find a very poisson-shaped distribution, suggesting source is mostly deposited in un-obscured region
- This makes extraction of mean number of PE insensitive to the precise deposition shape
- We can safely assume the "less obscured configuration" and perform the "simple" raytracing only

3.75 ± 0.1 % Solid angle acceptance from source to plate

Propagation Effects – Rayleigh Scatters

- Rayleigh scattering has an effective length of 90cm.
- Our source-plate distance is ~40cm
- We analytically calculate the fraction of rays expected to scatter off course in this length to be 36.4%.
- Of these, ~6.1% still reach the plate.
- Our first order guess is therefore
 f_rayleigh = 0.703
- We add a further 5% to this to account for "helpful scatters" back into the volume, and give big systematics so

f_rayleigh = 0.75 ± 0.05

counted

not counted (guess 5%)

Propagation Effects – Impurity Absorption

- No theoretically known absorption mechanism at 128nm in pure argon
- But ~ppm impurities can lead to finite absorption lengths.
- For this test we monitored O2, N2 and H20 at <10ppb precision

Impurity	Monitor	Level
N_2 *	LDetek LD8000	$20 \pm 10 ppb$
O_2	Servomex DF-310E	$39 \pm 2ppb$
H_2O *	TigerOptics Halo+	< 70 ppb

* = First installation and test of actual MicroBooNE cryo analytics!

	Value	Uncertainty	Source	Uncertainty Comment
			From MIT range straggling	
210Po Alpha Energy (MeV)	5.3	0.1	studies	
			Doke et al, NIM A Volume 269,	
Ideal Scint Yield (photons / MeV)	51000	1000	lssue 1, 291–296	Spread of values given in paper
			Doke et al, NIM A Volume 269,	
dEdx Quenching for alpha	0.71	0.04	lssue 1, 291–296	Error bar from yield vs LET plot
			ICARUS Light Collection	Number of significant figures
Prompt light for alpha	0.565	0.005	(unpublished)	given
			Calculated accounting for well	
			geometry and source	Variation between extreme
Fractional Solid Angle	0.0375	0.001	distribution	source deposition distributions
			Calculated 0.71 in worse case,	
			and assume some "helpful	71% is worst case, add on 5%
Rayleigh Scattering losses	0.75	0.05	scattering"	for helpful scatters
_				
Average γ / α	3050	292		

Light yield prediction for Bo

Contents

- 1. Prediction of expected GQE
- 2. Expected Light Yield in Bo
- 3. Extraction of GQE from Bo Data
- 4. Implications for MicroBooNE

How to Extract GQE

- Measure single PE pulse area spectrum using low intensity pulsed LED
- Measure distribution of areas in a sample of PMT pulses from alpha scintillation light
- Normalize to average single PE area and read off mean # of PE.
- Divide by light prediction to find GQE

A crosscheck

- We repeated all the above analysis with the source moved down to 8" from the plate.
- The following change:
 - Solid angle subtended (we calculate)
 - Rayleigh scattering effect (we calculate)
 - Impurity absorption, if any (we neglect)
 - Non-uniform plate illumination effect (we neglect)

Distribution with 8" Separation

