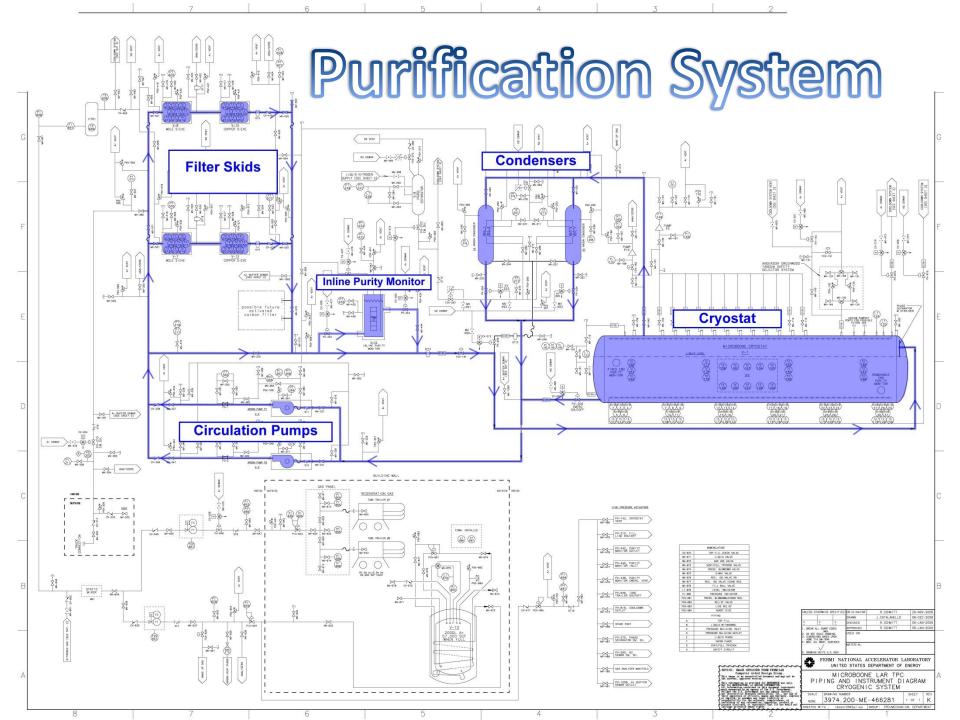
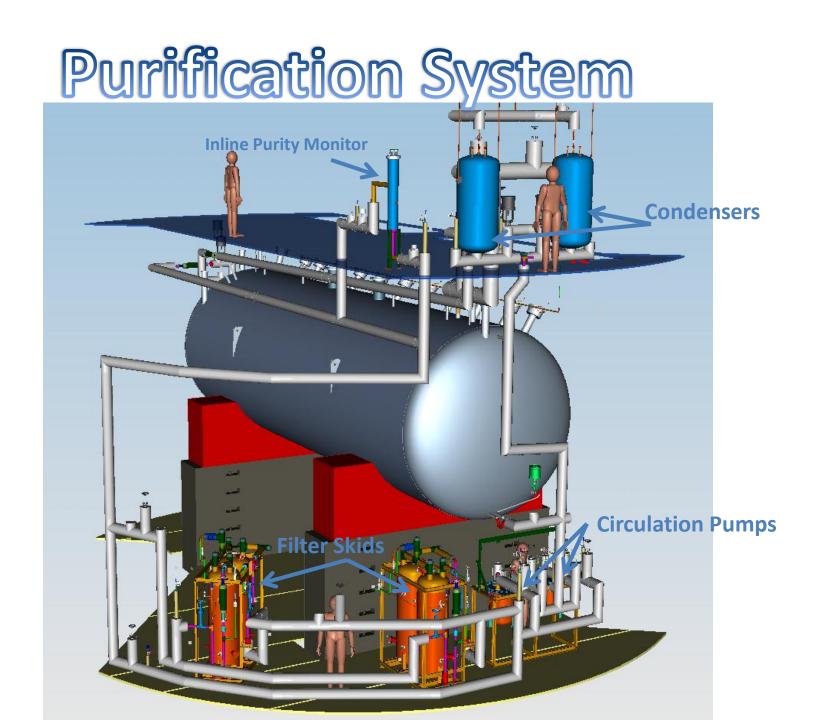
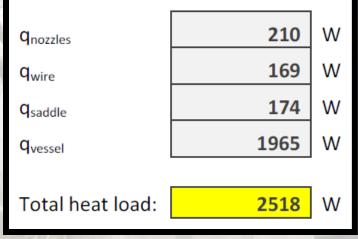
Microboone Cryogenic System


Design and Lessons


Mike Zuckerbrot – Contract Engineer Bob Sanders – Sr. Engineer

Cryogenic System Overview

Main Subsystems


- Purification System
 - Consists of the Cryostat, Circulation Pumps, Copper and Molecular Sieves (Filter Skids), and Argon Condensers
- Cooldown System
 - Consists of the Cryostat, Compressor and Aftercooler, Heat Exchanger, and a Molecular Sieve
- Buffer System for Test Run
 - Consists of the 11,000 gallon Argon Dewar, Circulation Pumps, and the Filter
- Nitrogen System
 - Consists of the 11,000 gallon Nitrogen Dewar, Phase Separator, and Heat Exchanger

Cryostat

- 150" ID x 40 ft long x 7/16" thick; weighs about 70,000 lbs
- Full Vacuum 30 psig
- About 35,000 gal. Liquid Argon
- Insulated by 16" Closed Cell Spray on Polyurethane
- Supported by 2 High Density (12-15 pcf) Polyurethane Saddles
 Ribbed design

Heat load calcs performed by Glenn Morgan

Circulation Pumps

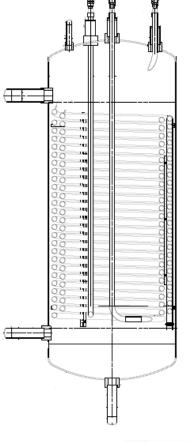
- Barber Nichols BNCP-32B Centrifugal Pumps
- Used at CERN, LAPD, and others
- 0.75 HP
- Two in Parallel, One Spare
- About 12 GPM Each, Variable
 Frequency Drive
- About 1 Cryostat Volume Change per Day
- Flow Rates Measured with Venturi Tubes

Filter Skids

- Two Skids, One Molecular and Copper Sieve Each
 - One Skid Active at a Time, Alternates with Regenerations
 - All Four Vessels and Inlet/Outlet Piping Vacuum Jacketed
- About 3 cf of Filter Media in Each Vessel
 - Vessel Geometry Based on Flow Distribution and Water/Oxygen Capacity
 - Filter Media can be Filled/Emptied from Top Flange, No Disassembly Required
- Sintered Metal Strainers on Skid Outlets and at Cryostat Inlet

Filter Skids

- Regeneration of Both Vessels
 Simultaneously
- External Gas Circulation Heater for Molecular Sieve
 - Heat with Nitrogen Gas
- Tube Trailer with 2.5%/97.5%
 Hydrogen/Argon Mixture for
 Copper Sieve
 - 2,000 L Argon Dewar for Percentage Hydrogen Adjustment
- Nine Internal RTDs per Vessel to Prevent Overheating
- Flow Through Design
- Analyzer Port After Each Vessel



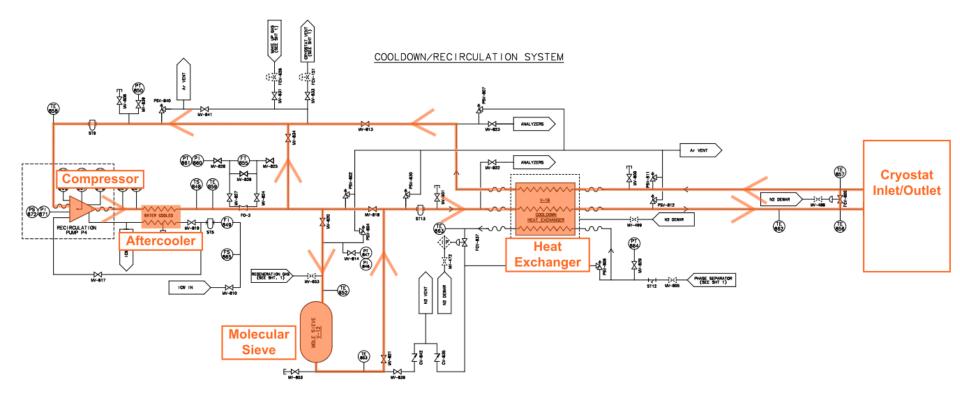
Condensers

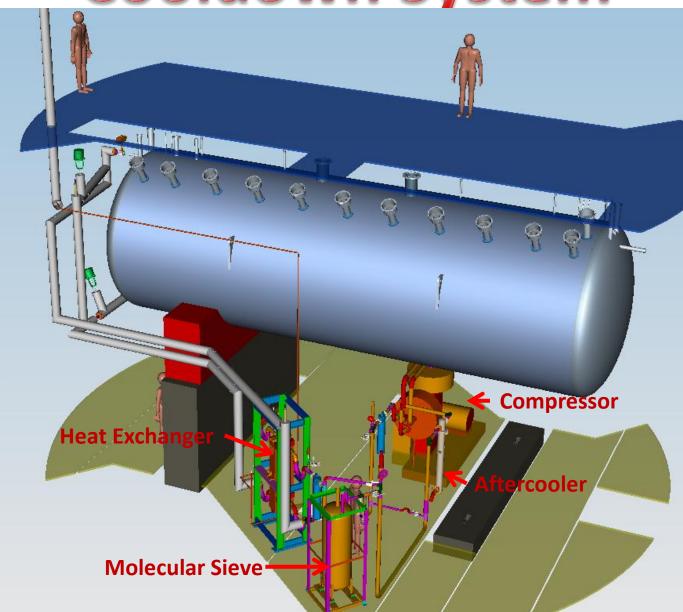
- Two Argon Condensers
 - One Active, One Spare
- Powered by Liquid Nitrogen
- Coiled Design, Similar to LAPD Condenser
 - Run One or Both Coils
- Design Load of about 9 kW
 - Large Capacity to De-Superheat due to the Cryostat Ullage Temperature Profile

- Cryogenic Piping is all Foam
 Insulated
- 2: Operational Heat Load Estimate
 - 2.a: Cryostat Heat Leak 2,589 Watts
 - 2.b: Piping Heat Leak 2,039 Watts
 - 2.c: Pump Heat Loads 1,019 Watts
 - 2.d: Filter Heat Loads 94.6 Watts
 - 2.e: Condenser Heat Loads 400 Watts
 - 2.f: Valve Heat Loads 262 Watts
 - 2.g: Tap Heat Loads 58 Watts
 - 2.h: Electronics Heat Load 716 Watts
 - 2.i: Total Operational Heat Load (1.3 SF) 9,461 Watts

Gas Analyzer Manifold

- Check Purity Levels from 12
 System Sample Points
- High/Low Sensitivity Sides
 - Low Sensitivity: 0 500 ppm Oxygen, and 5 – 23,500 ppm Water
 - High Sensitivity: 75 ppt Oxygen, 100 ppb Nitrogen, and 2 ppb Water
 - Send One or More Sample Point to Multiple Analyzers Simultaneously
- Vacuum Pump Individual System Sample Point Tubing Routes
- Small Bellows Pump to Build Pressure from Cryostat


Buffer System for Test Run

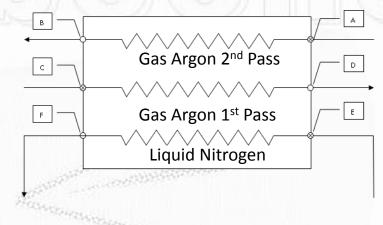

"Microboone June Run"

- 11,000 Gallon Liquid Argon Buffer Dewar / Nitrogen Dewars
 - Argon Buffer Dewar Filled with One Tanker for June Run
 - Nitrogen Dewar Supplies Coolant for the Internal Condenser in the Argon Buffer Dewar
- Argon Buffer Dewar in Place of Cryostat and Condensers for Equipment Testing
 - Circulation Pumps
 - Filter Skids
 - Inline Purity Monitor
 - Gas Analyzer Panel
 - Regeneration System

Compressor

- Used for Initial Recirculation as well as Cooldown
 - Design Rate About 36 lb/min Argon Gas
 - Cryostat has Externally Mounted Surface Heaters
- Metal Diaphragm Type Compressor
 - One Stage
 - Two Parallel Diaphragms
- 30 HP, 1800 RPM, Water
 Cooled Motor
- Triple Diaphragm
 Construction, Automatic
 Leak Detection System

- Discharge Gas Cooled to around Room
 Temperature by Water Powered Basco
 Aftercooler
- Venturi Tube for Flow Measurement


- Molecular Sieve
 - About 12 cf of Filter
 Media
 - Filters Out Water During Initial Recirculation and Cooldown
 - Media can be Filled/Emptied from Top Flange
 - High Temperature Insulation
 - Analyzer Sample Ports on Outlet of Molecular Sieve and Cryostat

Heat Exchanger

- Aluminum, 3 Pass Plate-Fin Design
 - 2 Passes Gas Argon
 - 1 Pass Liquid Nitrogen
- Cool Gas Argon (1st Pass) from Room Temperature to Around 100 K over 2-3 Weeks
- About 100 lb/hr Liquid Nitrogen Required
- Cold Box Insulated with Nitrogen Purge
- >95% Efficiency
- Designed to ALPEMA and ASME BPVC VIII Standards

Comments and Considerations

- Mock-up in Lab F
 - Purification System (Pit Level)
 - Fit Condenser Lines
 - Outfit Heat Exchanger
 - Fix Alignment Issues

Comments and Considerations

Contract Out Large Panels

- Give Specifications, let Vendor Design
- Maximum/Minimum Overall Dimensions and Port Locations
- Cooldown System Design and Cost Considerations
 - Equipment Cost ~\$400K-500K
 - Different Methods of Temperature Control Possible
 - IE Nozzles, TPC Surface Heaters
- Gas Mixing System for Regeneration
 - Major Cost Savings Over Time