Cold Electronics Development for LAr TPC

Hucheng Chen On behalf of the Cold Electronics Team

March 21st, 2013

Outline

- Introduction
- LAr TPC Signal Properties
- Why Use Cold Electronics
- Cold Electronics Development
- MicroBooNE
- LBNE
- 35 Ton
- CMOS Lifetime
- CMOS in DC operation: analog FE ASIC
- CMOS in AC operation: logic circuit and FPGAs
- Summary

Charge Signal Formation

Why Use Cold Electronics

- Cold Electronics Development
- MicroBooNE
- LBNE
- 35 Ton

MicroBooNE Readout Electronics System

MicroBooNE Cold Electronics

Cold Electronics ASIC - Front-End Detail and Calibration Scheme

$\mathrm{C}_{\mathrm{INJ}} \approx 180 \mathrm{fF}$
Integrated injection capacitance ($10 \times 18 \mu \mathrm{~m}^{2}$)
Measured with high-precision external capacitance

$$
C_{I N J} \approx\left\{\begin{array}{l}
184 \mathrm{fF} \text { at } 300 K \\
183 \mathrm{fF} \text { at } 77 K
\end{array}\right.
$$

Charge sensitivity calibration of entire TPC during assembly, cooling and operation

MicroBooNE Cold Electronics

- Cold Mother Board

Horizontal cold motherboard with 12
ASIC chips (192 channels) populated

Vertical cold motherboard with 6 ASIC chips (96 channels) populated

- House front end ASIC
- Rogers 4000 series base material
- Provide detector signal interconnections
- Provide ASIC control and monitoring signals, calibration network
- Provide bias voltage distribution for wire planes
- Horizontal version
- 96 "Y" channels
- 48 "U" channels
- 48 "V" channels
- Vertical version
- 96 "U" or "V" channels

MicroBooNE Cold Electronics

Noise vs. Temperature: 12 ASICs (192 channels)

ASICs Gain Uniformity: 12 ASICs (192 channels)

- Cold Electronics Development
- MicroBooNE
- LBNE
- 35 Ton

Cold Electronics for LBNE LAr TPC

- 1 APA - 2560 wires
- 1120 X wires @ 4.5mm pitch
- 720 U wires @ 4.9mm pitch
- 720 V wires @ 5.0mm pitch
- Front End Mother Board
- 128 channels: 56X, 36U,36V
- 20 mother boards mounted on one end of the APA frame

Cold Electronics for LBNE LAr TPC

Cavern

ADC - Architecture

Clockless Low Power Current Mode ADC

One ADC stage

Fabricated in ASIC for SNS, see De Geronimo, et al., IEEE Trans NSS, 54 (2007) 541.

Design

- Dual stage: 6-MSBs in 150ns, then 6-LSBs in 250ns
- Single conversion trigger per stage
- 12-bit resolution
- $2 \mathrm{MS} / \mathrm{s}$ conversion rate
- Power dissipation 3.6 mW at $2 \mathrm{MS} / \mathrm{s}$
- Power-down option
- Wake up in few tens of ns
- Layout size: $0.23 \mathrm{~mm} \times 1.25 \mathrm{~mm}$

Single Cold ADC Test Results

Sinewave at 77 K

ADC HIST

ADC Output Histogram DC

- Measured linearity
- DNL < 1.5 LSB for majority of codes
- INL $\sim 1 \%$ of Range
- Equivalent input noise measurement
- 1.27 LSB
- Effective resolution: 11.6 bits
- The ADC has been tested with an FPGA, both immersed in LN_{2}
- Cold Electronics Development
- MicroBooNE
- LBNE
- 35 Ton

Cold Electronics for 35T LAr TPC

- 3 APA - 2304 wires total
- Each APA has 768 wires
- 336 X wires @ 4.5mm pitch
- 216 U wires @ 4.9 mm pitch
- 216 V wires @ 5.0 mm pitch

Cold Electronics for 35T LAr TPC

Cavern

Key Components of Cold Electronics

Cold FPGA Test

Vendor	Family	Technology	Speed of GTX [Gbps]	\# of GTX	Memory [Mbit]	Core Voltage [V]	Status
ALTERA	Arria GX	90 nm	3.125	$4-12$	$1.2-4.5$	1.2	Tested by BNL
ALTERA	Arria II	40 nm	6.375	$8-24$	$2.9-16.4$	0.9	Tested by BNL
ALTERA	Stratix II GX	90 nm	6.375	$4-20$	$1.4-6.7$	1.2	Tested by SMU
ALTERA	Cyclone IV E	60 nm	$\mathrm{~N} / \mathrm{A}$	N / A	$0.3-3.9$	$1.0,1.2$	Tested by BNL
ALTERA	Cyclone IV GX	60 nm	3.125	$2-8$	$0.5-6.5$	1.2	Being tested at BNL
ALTERA	Cyclone V GX	28 nm	3.125	$4-12$	$1.2-12.2$	1.1	To be tested
XILINX	Virtex 5	65 nm	6.5	$0-24$	$0.9-18.6$	1.0	To be tested

Cyclone IV GX Transceiver Starter Board

- Test of Cyclone IV GX Transceiver Starter Board in LN_{2}
- Transceiver works well at both $1 \mathrm{Gbit} / \mathrm{s}$ and 2Gbit/s
- JTAG configuration works
- AS configuration works with Altera EPCS device
- Internal memory works with SignalTap
- Internal PLL and fabric work for clock generation
- On board SRAM works with BIST

Brookhaven Science Associates 3/21/13
H. Chen - LAr TPC R\&D Workshop

Eye Diagram @ 2 Gbits

Impact Ionization and CMOS Lifetime

Chemistry slows down at 89K.
What is left of aging processes? -Impact ionization. Creation of interface states by (some) hot electrons causes a decrease in mobility, transconductance (gain), \boldsymbol{f}_{t}, and a threshold shift.

- This limits the effective lifetime of the device at any temperature (defined in industry as 10% decrease in transconductance $\boldsymbol{g}_{\boldsymbol{m}}$).

- Accelerated lifetime testing is performed by stressing the device, at increased drain-source voltages and by measuring the substrate current (a very sensitive quantitative indicator).

$$
\begin{array}{r}
\tau I_{d s}^{\text {cator })} / W \propto \frac{1}{\left(I_{s u b} / I_{d s}\right)^{a}} \\
a=\varphi_{i t} / \varphi_{i} ; 2.9-3.2 \\
\varphi_{i} ; 1.3 \mathrm{eV} ; \varphi_{i t} ; 3.7 \mathrm{eV}-4.1 \mathrm{eV}
\end{array}
$$

Lifetime vs $1 / V_{d s}$ extracted from the stress measurements

NMOS L=180nm, $\mathrm{W}=10 \mu \mathrm{~m}(5 \times 2 \mu \mathrm{~m})$; nominal core voltage 1.8 V . The projected lifetime at 300 K is \sim an order of magnitude longer than at 77 K . Reducing V_{ds} at 77 K by $\sim 6 \%$ makes the lifetime equal to that at 300 K . Design at low $\mathrm{I}_{\mathrm{d}} / \mathrm{W}$ for longer lifetime.

CMOS in AC operation: Logic Circuits and FPGAs

- It has been long established, e.g. Quader\&Hu et al. (1994), that ac and dc hotcarrier induced degradation is the same if the effective stress time is taken into account. This quasi-static model, confirmed recently by White\&Bernstein (2006), considers the ac stress as a series of short dc stresses strung together.
- The lifetime of a logic circuit driven at a clock frequency can be related to the lifetime of the NMOS transistor under continuous ac operation in terms of the ratio of the effective stress time during a change of state and the clock period. Thus the lifetime of digital circuits (ac operation) is extended by the inverse duty factor $4 /\left(f_{\text {clock }} t_{\text {rise }}\right)$, compared to dc operation. This factor is large (>100) for deep submicron technology and clock frequencies needed for LAr TPC readout.
- Design guidelines for digital circuits and FPGAs: Keep the inverse duty factor high. As a an additional conservative measure, reducing $V_{d s}$ by 10% adds an order of magnitude margin to the lifetime.

Effective Stress Time is a small fraction of the Clock Cycle:

$$
\left[\frac{\text { ac stress time }}{\text { dc stress time }}\right] \approx\left(f_{\text {clock }} t_{\text {rise }}\right) / 4
$$

Standard method for accelerated stress testing of FPGAs: observe ring oscillator frequency under severe $V_{\text {ds }}$ stress (Wang et al. 2006)
(Degradation of $I_{\text {ds }}$ leads to increased rise (propagation) time and reduced ring oscillator frequency.)

Hot-carrier induced degradation occurs only when the substrate current is high, i.e., nominal V_{ds} and high I_{ds}.

Summary

- Cold electronics installed close to the detector elements is critical to make possible giant LAr TPCs and improve signal to noise ratio
- CMOS at Low Temperature
- Started from . 18 um CMOS technology with only 300 K models for analog front end; parameters extracted at 77 K
- CMOS found functioning at cryogenic temperature with increased gain $\left(\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{ds}}\right)$ and lower noise
- Development of Cold Electronics for LAr TPC
- The CMOS analog FE ASICs equipped mother boards are being tested for final production of MicroBooNE experiment
- We have accumulated ~1500 chip•immersions in LN_{2} without any failures due to thermal contraction/expansion
- ADC characterization test and cold FPGA lifetime study are being conducted
- Analog FE ASIC + ADC ASIC + Cold FPGA will be used to equip the 35 Ton LAr TPC
Brookhaven SceneeAssocates 321/3
H. Chen - LA T TPC RRD Workshop

26
BROOKHANEN

