
European Double-Phase LAr TPC R&D

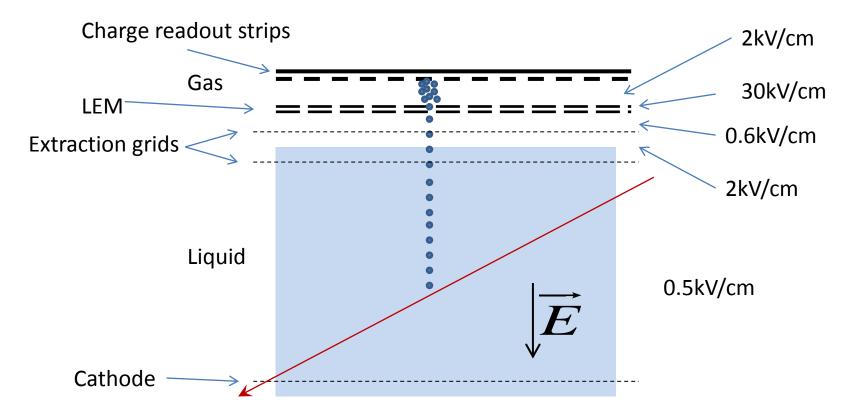
Christos Touramanis

LArTPC R&D Workshop Fermilab , 20-21 March 2013

OUTLINE

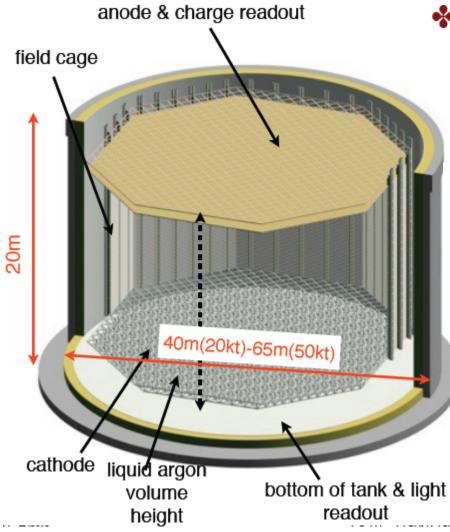
- The aim: ~100kt GLACIER double-phase TPC
- ETH group @ CERN:
 - 10x10cm² prototype
 - 40x76x60cm³ prototype
- ArDM (1 ton) -> operational at CAFRANC
- Purification without evacuation of 6m³ vessel "old news"
- Saclay: MicroMegas charge readout
- The Liverpool programme
- Reconstruction development:
 - at QMUL
 - at Warwick
 - at Cambridge

Next step at CERN: A 6x6x6m³ demonstrator

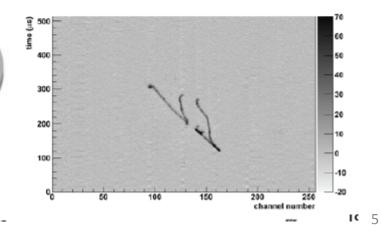

History and Disclaimer

- 1977: Original proposal, C. Rubbia, CERN-EP/77-08
- 1985: ICARUS proposal to INFN, INFN/AE-85/7
- 1987-95: prototypes up to 3 ton at CERN
- 1997-99: 50 lt chamber in NOMAD neutrino beam
- 2001: operation on the surface of first 300 ton ICARUS module
- Since May 2010: continuous operation of ICARUS in LNGS
- Since 2000: Development of double phase concept
 - Up to 200lt (active) prototypes at CERN
 - 1ton ArDM TPC now operational in CAFRANC
- Next step: 6x6x6m³ demonstrator, ~2016 @ CERN

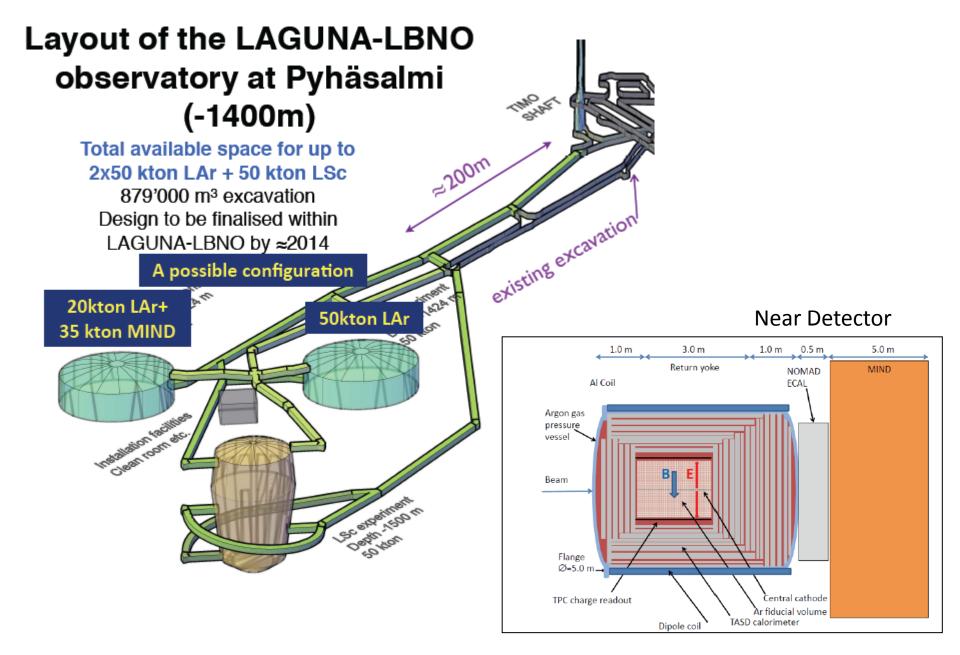
35 years of LAr in Europe!


This talk is concerned only with items in the lower part.

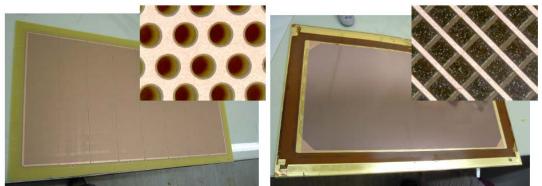
Double-phase LAr TPC operation

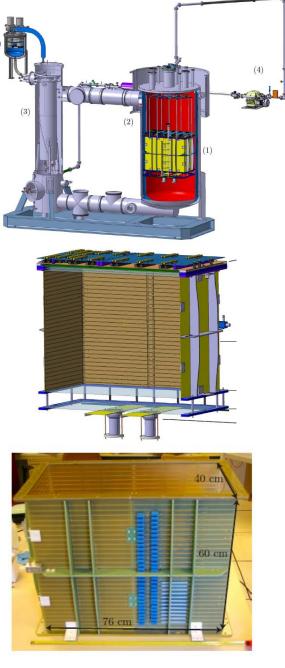

- Distances between layers at the top ~2cm
- LEM thickness ~1mm
- Charge Amplification through LEM ~30

20-50kt GLACIER detector

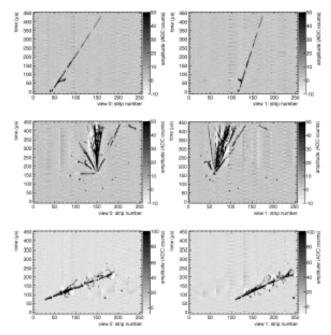

Double phase LAr LEM TPC (GLACIER, Venice 2003 !) hep-ph/0402110; J.Phys.Conf.Ser. 171 (2009) 012020; NIM A 641 (2011) 48-57; JINST 7 (2012) P08026; arXiv:1301.4817

Diffusion coefficients not well known. At 20m drift Expect transv. ~5mm, long. ~3mm


Design Studies

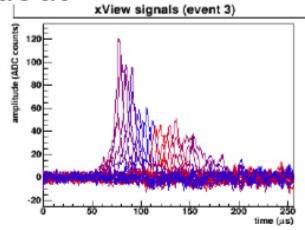

- LAGUNA (100 members) 2008-11
- LAGUNA-LBNO (300 members) 2011-14
- Site studies; beam facility (CERN)
- Extensive Industrial participation
- Detector Design (LAr), Near Detector design
- Project planning, detailed costing
- LBNO: Eol submitted to CERN SPSC, under review

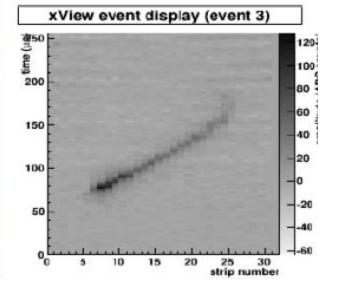
200lt prototype (ETH)


- 1ton ArDM vessel
- 76x40cm² readout surface
- 60cm max drift
- 2 TPB-coated PMTs
- LEM (left) with 0.5M holes
- 2D anode (right)
- CAEN (hot) electronics

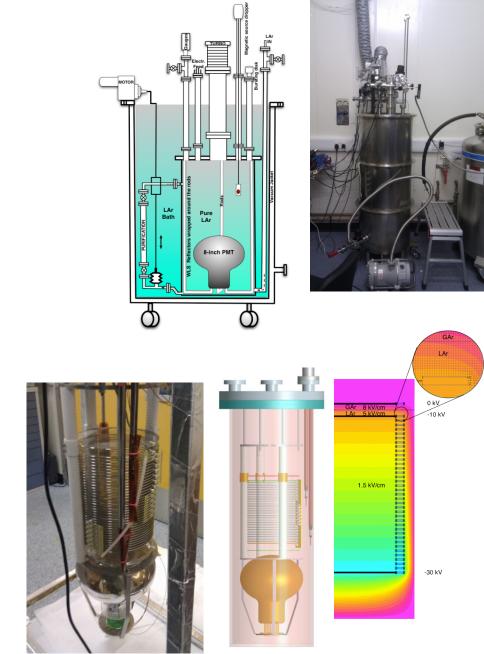
200lt prototype (cont.)

- Stable operation for 1 month
- Muon, had. shower, EM shower:
- Coherent noise filtering, QSCAN reconstruction
- Effective gain: 14, s/n > 30 (MIP)
- A. Badertscher et al., JINST 7 (2012) P08026

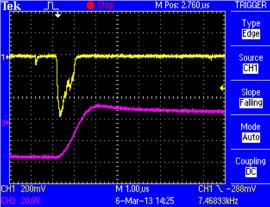

ETHZ-Saclay test of Micromegas for charge readout

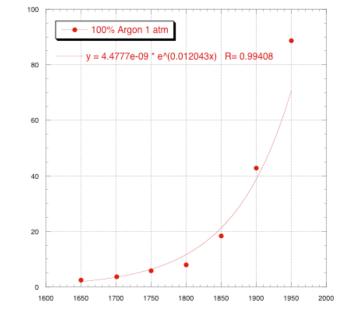

Test done in the 3I ETHZ setup at CERN Bulk Micromegas, 32 strips 3.1 mm pitch, 100 µm gap Proof of principle : stable operation reached, cosmic ray tracks observed,

Gain ~5. Further steps in collaboration with U. of Liverpool and Lyon. New tests this year.



LAr at Liverpool


- Design & construction inhouse
- 250lt bath, 40lt chamber
- Recirculation, filtering
- Drift voltage up to 1kV/cm
- TPB-coated cryo PMTs
- Purification, electron lifetime, absolute calibration done (K. Mavrokoridis *et al 2011 JINST 6 P08003*)

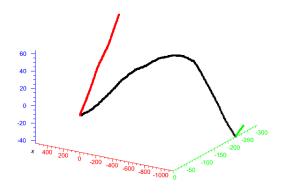


Liverpool - Saclay plans

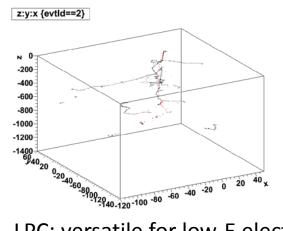
- Demonstrated drift, extraction, amplification, Q readout using TGEM (picture)
- See S2 light (yellow) and charge preamp signal (purple)
- Gain 100 in gas (1Atm)
- Saclay prepares MicroMegas and provides readout
- 2013 plan: campaign of different micromegas measurements at Liverpool

Corrolation Between Gain and GEM Bias Voltage

aain


Event Reconstruction Software

- QSCAN used by ETH group
- UK effort:
 - Development of new algorithms and tools
 - Simulation chain, Reconstruction with CA and LPC, PID tools by Warwick group
 - PANDORA by Cambridge group
 - Integration, performance evaluation, cross-checks
 - Led by QMUL group, Warwick coming on board


– Anything to be gained from ICARUS?

Software development at Warwick

- Home-grown LATTE package includes
 - LAMU: MC package using GENIE and G4
 - Full reco chain: pre-processing tools, track/cluster finding and separation using Cellular Automaton and Local Principal Curves, full "physics" objects output
 - PID tools
- See: B. Morgan, JINST 5 (2010) P07006; arXiv:1210.2215

CA: robust for tracks

LPC: versatile for low-E electrons

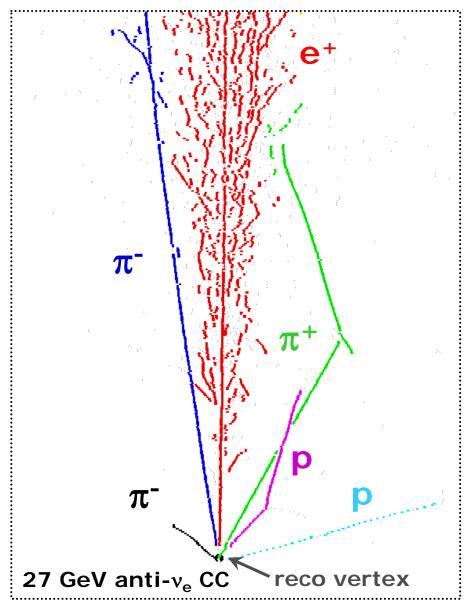
Automated LAr Reconstruction

ampridge There is now an advanced effort at Cambridge to write fully automated event reconstruction for LAr detectors.

- Cambridge are world leaders in fine-grain reconstruction, having developed Particle Flow Calorimetry for ILC/CLIC. ♦ Techniques are readily applicable to LAr detectors.
- Recently released Pandora Software Development Kit Package of analysis tools and template algorithms.
- Have used Pandora to build a chain of LAr algorithms.

Reconstruction Strategy:

$$Hits \longrightarrow Clusters \longrightarrow Vertex \longrightarrow Final-State Particles$$

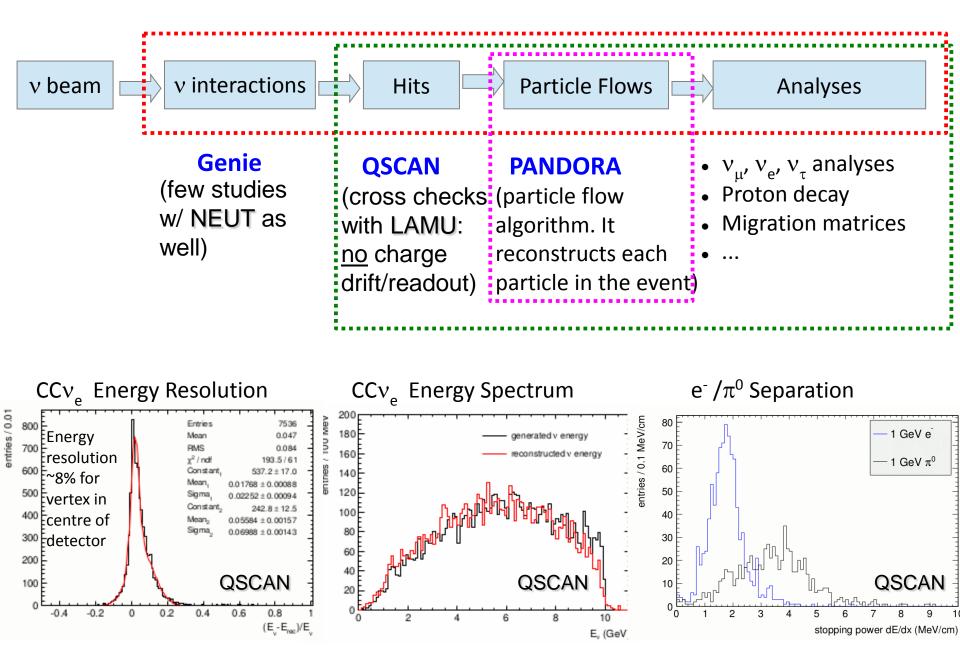

- **Clusters**: Use topological associations between hits to build 2D clusters (these are building blocks for particle tracks and showers).
- **Vertex**: Use <u>fast likelihood fit</u> to determine interaction vertex.
- **Particles**: Use <u>particle-growing</u> algorithms to build tracks and showers, based on clusters, vertex and topology.

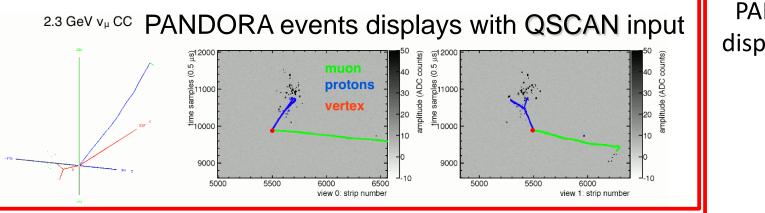
<u>Current status</u>: have 2D prototype. Now extending to 3D.

Andy Blake, John Marshall, Mark Thomson (Cambridge University)

LAr Reconstruction

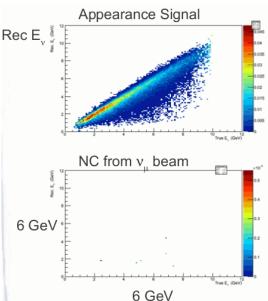
Automated LAr Reconstruction (contd.)

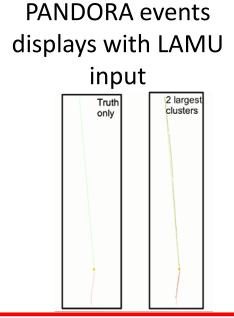


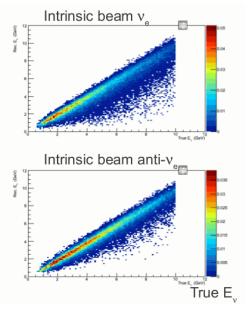

- Use GENIE and LArSoft to simulate neutrino interactions.
 - LBNE beam spectrum.
 - MicroBooNE detector geometry.
- Run the LArSoft hit-finder. Then, pass hits to PANDORA for pattern recognition and event reconstruction.
- Prototype 2D reconstruction uses 18 algorithms.
 - Each algorithm grows event in a particular way.
- 2D results look promising.
 - Vertex resolution is 1.5 cm.
 - Able to handle quite complex final states (see display left).
- Full 3D reconstruction chain now in development.

Andy Blake, John Marshall, Mark Thomson (Cambridge University)

Glacier Reconstruction



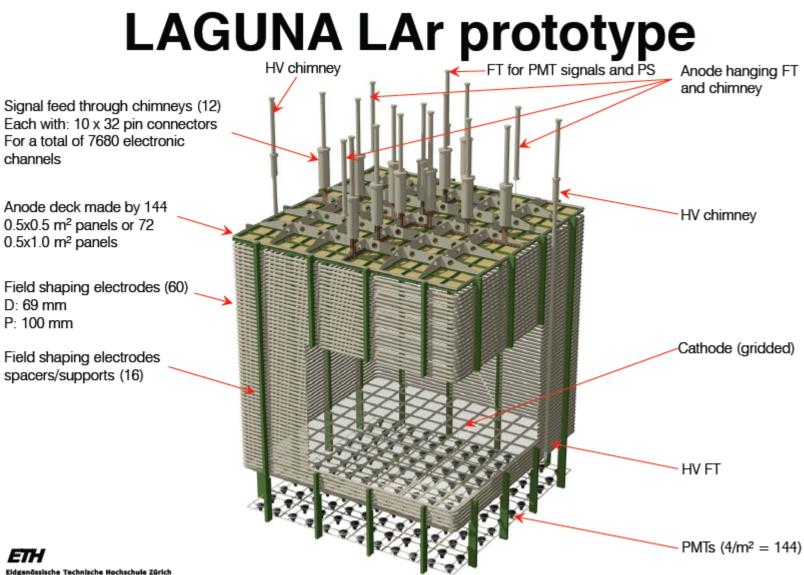

Investigating w/ Pandora: reconstruction efficiency versus theta, opening angle between two tracks and vertex reconstruction – reasonable results.


Working w/ Pandora developers to address reconstruction of tracks parallel to the strips (perpendicular to the beam direction)

Physics: analysis and migration matrices done using smeared MC true events.

Moving to reconstructed events.

The next big step in Europe:


The LAGUNA 6x6x6m³ Demonstrator at CERN

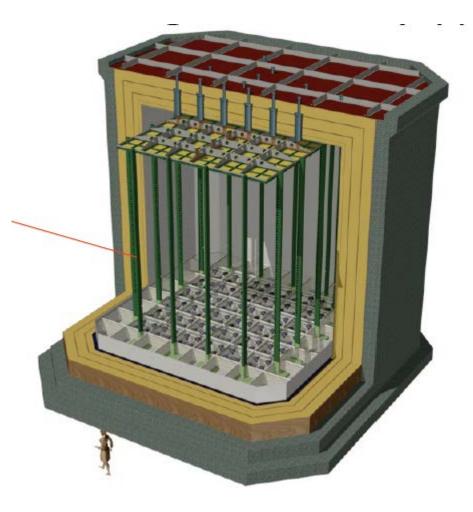
using charged particle testbeams and possibly neutrinos

aiming to be operational in 2016

The LAGUNA Prototype

- Industrial prototype to validate construction and operation methods for the 20kt Far Detector (LAGUNA-LBNO).
- Use charged particle testbeams to validate simulation, measure EM/Had calorimetry and tracking performance, bring reconstruction tools to physics readiness
- Position: CERN N.A., EHN1 extension (ready in 12 months?)
- To be operational < 2016
- May be exposed to neutrinos if CENF is built
- Highly relevant beyond Europe (LBNE, Okinoshima)

Eldgenössische Technische Hochschule Zu Swiss Federal Institute of Technology


Overview of parameters

Liquid argon density at 1.2 bar	[T/m ³]	1.38346
Liquid argon volume height	[m]	7.6
Active liquid argon height	[m]	5.992
Pressure on the bottom due to LAr	[T/m ²]	1.05 (≡ 0.1 MPa ≡ 1.031 bar)
Inner vessel size (W x L x H)	[m x m x m]	8.288 x 8.288 x 8.108
Inner vessel base surface	[m ²]	67.6
Total liquid argon volume	[m³]	509.6
Total liquid argon mass	[T]	705.0
Active LAr area (percentage)	[m ²]	36 (53.3%)
Active (instrumented) mass	[T]	298.2
Charge readout square panels ($0.5m imes 0.5m$)		144
Number of signal feedthroughs (640 channels/FT)		12
Number of readout channels		7680
Number of PMT (area for 1 PMT)		144 (0.5m×0.5m)

General overview

SPSC recommendation: "validate large scale" Clean room (indicative) in assembling phase and DAQ and control room (in normal running phase). Eventually used as support for cryocoolers and cryogenic liquid storage vessels

- Vessel to be "membrane" technology (GTT/FR)
- Passive GRPF insulation
- Foreseen to demonstrate the baseline options (LEM) and also allow for alternative charge readout methods to be tried

Summary

- LAr, originally proposed by Carlo Rubbia in 1977 at CERN, is the technology of choice for most proposed/planned LBL experiments
- European experts in single-phase largely working with US (LBNE) community
- The rest of the European neutrino community is working on double-phase technology
- We are poised to establish double-phase as a credible option for (far) giant LAr detectors
- 🙂and actually to prove that it is the best...... 🙂

Thank you very much