## Title

## Shyam Bhuller

University of Bristol

March 22, 2024

- Current selection is not great.
- Assess each region, understand the particle content of each process
- start with absorption region.


## cex events in abs region

- generated tables which tells us the particle content using backtracked truth information
- tables show the number of $\gamma$ and $\pi^{ \pm}$from the beam interaction
- In absorption region cex events:

1. 219 have no $\gamma$
2. 384 have $2 \gamma, 859$ have $1 \gamma$
3. 164 have $>2 \gamma$

| $\boldsymbol{\pi} \pm$ | $\boldsymbol{\gamma}$ | counts | fractions |
| ---: | ---: | ---: | ---: |
| 0 | 1 | 859 | 0.53 |
| 0 | 2 | 384 | 0.24 |
| 0 | 0 | 219 | 0.13 |
| 0 | 3 | 117 | 0.07 |
| 0 | 4 | 33 | 0.02 |
| 0 | 5 | 12 | 0.01 |
| 0 | 6 | 2 | 0.00 |

- identify the $\gamma$ that was missed $\rightarrow$ high efficiency $\gamma$ selection


## pip and spip events in abs region

- pip events in abs region:

1. 1328 have no $\gamma$
2. 2411 have no $\pi^{ \pm}$
3. 1317 have $>1 \gamma, 1061$ have $1 \gamma$
4. 1295 have $>0 \pi^{ \pm}$
$\Rightarrow$ identify the $\pi^{ \pm}$and $\gamma$ that was missed $\rightarrow$ high efficiency $\pi^{ \pm}$and $\gamma$ selection

- spip events in abs region:

1. 2175 have no pions, 651 have $1 \pi^{ \pm}, 31$ have 2 $\pi^{ \pm}$
2. 2212 have at least 1 PFO not originating from the beam interaction

- the events with 2 backtracked $\pi^{ \pm}$is likely due to broken tracks

| pip <br> $\boldsymbol{\pi}^{ \pm}$ |  |  |  |
| ---: | ---: | ---: | ---: |
| 0 | counts | fractions |  |
| 0 | 1 | 741 | 0.20 |
| 0 | 0 | 620 | 0.17 |
| 1 | 2 | 520 | 0.14 |
| 0 | 3 | 397 | 0.13 |
| 1 | 1 | 282 | 0.08 |
| 2 | 0 | 180 | 0.08 |
| 1 | 2 | 156 | 0.05 |
| 0 | 4 | 152 | 0.04 |
| 1 | 3 | 51 | 0.01 |
|  |  | spip |  |
| $\pi^{ \pm}$ | $\gamma$ | counts | fractions |
| 0 | 0 | 2175 | 0.76 |
| 1 | 0 | 651 | 0.23 |
| 2 | 0 | 31 | 0.01 |
|  |  |  |  |

## How to select misidentified events

- processes in the absorption region have many pip and cex events with $\gamma$ which we can try to select.
- try to distinguish selected pip events and cex events using a pion selection.
- to identify as many PFOs as possible, use a higher efficiency selection than currently used.


## Photon selection

- Plots show all PFOs for events in the absorption region


- $\chi^{2}$ score is a combination of the proton $\chi^{2}$ fit and pion $\chi^{2}$ fit

$$
\frac{\left(\chi^{2} / n d f\right)_{p}-\left(\chi^{2} / n d f\right)_{\pi}}{\left(\chi^{2} / n d f\right)_{p}+\left(\chi^{2} / n d f\right)_{\pi}}
$$

## Photon selection

- Plots show all PFOs for events in the absorption region


- nHits cut to remove tracks
- distance to beam vertex excludes muons and $\gamma$ from other $\pi^{0}$ S


## Photon selection

- Plots show all PFOs for events in the absorption region


- large number of photons selected which did not originate from a beam $\pi^{0}$


## Photon selection performance tables



|  | $\boldsymbol{\pi}^{ \pm}$ | $\boldsymbol{\pi}^{ \pm}$:2nd | $\boldsymbol{\gamma}$ :2nd | $\boldsymbol{\gamma}$ :beam $\boldsymbol{\pi}^{\mathbf{0}}$ | $\boldsymbol{\gamma}$ :other $\boldsymbol{\pi}^{\mathbf{0}}$ | $\boldsymbol{e}^{-}$ | $\boldsymbol{e}^{+}$ | $\boldsymbol{p}$ | other | $\boldsymbol{\mu}^{ \pm}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| chi2 score | 8.37 | 5.16 | 1.27 | 24.92 | 8.34 | 0.21 | 2.31 | 45.40 | 2.10 | 1.92 |
| track score | 11.87 | 7.32 | 1.67 | 38.08 | 12.74 | 0.33 | 3.29 | 20.91 | 0.97 | 2.81 |
| nHHits | 7.54 | 5.80 | 2.21 | 53.61 | 17.89 | 0.43 | 4.48 | 5.05 | 0.32 | 2.67 |
| beam dist | 6.89 | 4.89 | 0.94 | 57.48 | 19.22 | 0.43 | 4.21 | 3.16 | 0.12 | 2.65 |
| beam ip | 7.08 | 4.72 | 0.67 | 58.72 | 19.41 | 0.32 | 4.06 | 3.22 | 0.12 | 1.68 |


|  | $\pi^{ \pm}$ | $\pi^{ \pm}$:2nd | $\gamma$ :2nd | Relativ <br> $\gamma$ :beam $\pi^{0}$ | efficiencies $\gamma$ :other $\pi^{\circ}$ | $e^{-}$ | $e^{+}$ | $p$ | other | $\mu^{ \pm}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| chi2 score | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| track score | 87.66 | 87.75 | 81.25 | 94.43 | 94.41 | 98.25 | 88.11 | 28.47 | 28.52 | 90.41 |
| nHits | 37.38 | 46.71 | 72.16 | 89.29 | 89.04 | 85.96 | 80.59 | 4.62 | 6.36 | 57.71 |
| beam dist | 30.38 | 35.01 | 27.27 | 85.11 | 85.02 | 77.19 | 67.29 | 2.57 | 2.06 | 50.94 |
| beam ip | 30.08 | 32.56 | 18.75 | 83.81 | 82.76 | 56.14 | 62.60 | 2.52 | 2.06 | 31.02 |

## Pion selection



## Pion selection




- high efficiency pion selection is difficult in the absorption region due to the large number of protons in these events.


## Pion selection tables

## Counts

|  | $\boldsymbol{\pi}^{ \pm}$ | $\boldsymbol{\pi}^{ \pm}$:2nd | $\boldsymbol{\gamma}$ :2nd | $\boldsymbol{\gamma}$ :beam $\boldsymbol{\pi}^{\mathbf{0}}$ | $\boldsymbol{\gamma}$ :other $\boldsymbol{\pi}^{0}$ | $\boldsymbol{e}^{-}$ | $\boldsymbol{e}^{+}$ | $\boldsymbol{p}$ | other | $\boldsymbol{\mu}^{ \pm}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| chi2 proton | 2317 | 1428 | 352 | 6899 | 2309 | 57 | 639 | 12566 | 582 | 532 |
| track score | 1980 | 1212 | 284 | 6447 | 2154 | 56 | 557 | 2597 | 113 | 476 |
| median dEdX | 1336 | 674 | 42 | 542 | 213 | 11 | 82 | 2204 | 88 | 202 |

Purity

|  | $\boldsymbol{\pi}^{ \pm}$ | $\boldsymbol{\pi}^{ \pm}$:2nd | $\boldsymbol{\gamma}$ :2nd | $\boldsymbol{\gamma}$ :beam $\boldsymbol{\pi}^{\mathbf{0}}$ | $\boldsymbol{\gamma}$ :other $\boldsymbol{\pi}^{\mathbf{0}}$ | $\boldsymbol{e}^{-}$ | $\boldsymbol{e}^{+}$ | $\boldsymbol{p}$ | other | $\boldsymbol{\mu}^{ \pm}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| chi2 proton | 8.37 | 5.16 | 1.27 | 24.92 | 8.34 | 0.21 | 2.31 | 45.40 | 2.10 | 1.92 |
| track score | 12.47 | 7.63 | 1.79 | 40.61 | 13.57 | 0.35 | 3.51 | 16.36 | 0.71 | 3.00 |
| median dEdX | 24.77 | 12.50 | 0.78 | 10.05 | 3.95 | 0.20 | 1.52 | 40.86 | 1.63 | 3.74 |

Relative efficiencies

|  | $\boldsymbol{\pi}^{ \pm}$ | $\boldsymbol{\pi}^{ \pm}:$2nd | $\boldsymbol{\gamma}$ :2nd | $\boldsymbol{\gamma}$ :beam $\boldsymbol{\pi}^{0}$ | $\boldsymbol{\gamma}$ :other $\boldsymbol{\pi}^{0}$ | $\boldsymbol{e}^{-}$ | $\boldsymbol{e}^{+}$ | $\boldsymbol{p}$ | other | $\boldsymbol{\mu}^{ \pm}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| chi2 proton | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| track score | 85.46 | 84.87 | 80.68 | 93.45 | 93.29 | 98.25 | 87.17 | 20.67 | 19.42 | 89.47 |
| median dEdX | 57.66 | 47.20 | 11.93 | 7.86 | 9.22 | 19.30 | 12.83 | 17.54 | 15.12 | 37.97 |

- in general, loose photon selection is good, a large number of photons from non beam $\pi^{0} \mathrm{~S}$ are being selected in the single pion production region

- loose pion selection is not great, protons are misidentified for each process
- for cex and pip processes, photons can be misidentified as pions

- matrices show the number of events and the number of selected pions and photons in the absorption region

- abs events can be selected by requiring $\mathrm{O} \gamma$ and $\mathrm{O} \pi^{ \pm} \rightarrow$ spip will be the dominant background
- all other events can be excluded from the selection, or we can migrate some events to other regions
- $1 \gamma+0 \pi^{ \pm}$can be moved to cex
- $>1 \gamma+>0 \pi^{ \pm}$can be moved to pip

- left is current confusion matrix, right includes optimisation made to absorption region:
high efficiency $\gamma$
0
$\neq 0$
high efficiency $\pi^{ \pm}$
0
$\neq 0$
action
keep in abs
remove

- left is current confusion matrix, right includes optimisation made to absorption region:
high efficiency $\gamma$ high efficiency $\pi^{ \pm}$
0
1
$>1$

0
0
$>0$
action
keep in abs
move to cex
move to pip
absorption optimised with rejection| Key: (counts, efficiency(\%), purity(\%))


reco region


- absorption region improves, single pion production is a dominant background
- events can be migrated to the charge exchange region, without reducing the purity

| $\pi^{ \pm}$ | $\gamma$ | spip <br> counts | fractions |
| ---: | ---: | ---: | ---: |
| 0 | 0 | 658 | 0.89 |
| 1 | 0 | 78 | 0.11 |
| 2 | 0 | 2 | 0.00 |
| $\boldsymbol{\pi}^{ \pm}$ | $\gamma$ | cex <br> counts | fractions |
| 0 | 0 | 133 | 0.75 |
| 0 | 1 | 35 | 0.20 |
| 0 | 2 | 7 | 0.04 |
| 0 | 3 | 2 | 0.01 |
| 0 | 5 | 1 | 0.01 |
|  |  | pip |  |
| $\pi^{ \pm}$ | $\gamma$ | counts | fractions |
| 0 | 0 | 224 | 0.66 |
| 0 | 1 | 48 | 0.14 |
| 1 | 0 | 48 | 0.14 |
| 0 | 2 | 5 | 0.01 |
| 1 | 1 | 4 | 0.01 |
| 2 | 0 | 4 | 0.01 |
| 0 | 3 | 3 | 0.01 |
| 1 | 2 | 1 | 0.00 |

## Next step

- Assess other regions, repeat same procedure to see what can be done to clean the regions
- run fit for Data and MC for the different region identifications


## Backup

efficiency

|  | $\pi^{ \pm}$ | $\pi^{ \pm}: 2 \mathrm{nd}$ | $\gamma$ :2nd | $\gamma$ :beam $\pi^{0}$ | $\gamma$ :other $\pi^{0}$ | $e^{-}$ | $e^{+}$ | $p$ | other | $\mu^{ \pm}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| chi2 score | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| track score | 93.65 | 93.03 | 79.79 | 94.85 | 95.32 | 94.53 | 91.55 | 36.65 | 39.24 | 96.08 |
| nHits | 11.48 | 23.01 | 71.54 | 86.68 | 86.06 | 87.06 | 80.00 | 3.60 | 5.09 | 24.74 |
| beam dist | 8.75 | 15.69 | 31.69 | 82.27 | 82.41 | 73.13 | 65.31 | 1.89 | 1.79 | 18.45 |
| beam ip | 8.52 | 14.40 | 19.26 | 80.36 | 73.42 | 43.78 | 51.35 | 1.83 | 1.72 | 9.40 |

## purity

|  | $\boldsymbol{\pi}^{ \pm}$ | $\boldsymbol{\pi}^{ \pm}$:2nd | $\boldsymbol{\gamma}$ :2nd | $\boldsymbol{\gamma}$ :beam $\boldsymbol{\pi}^{\mathbf{0}}$ | $\boldsymbol{\gamma}$ :other $\boldsymbol{\pi}^{\mathbf{0}}$ | $\boldsymbol{e}^{-}$ | $\boldsymbol{e}^{+}$ | $\boldsymbol{p}$ | other | $\boldsymbol{\mu}^{ \pm}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| chi2 score | 18.40 | 9.70 | 1.04 | 15.97 | 7.27 | 0.20 | 2.41 | 35.78 | 1.43 | 7.80 |
| track score | 23.70 | 12.41 | 1.14 | 20.83 | 9.52 | 0.26 | 3.04 | 18.03 | 0.77 | 10.31 |
| nHits | 6.91 | 7.30 | 2.43 | 45.27 | 20.45 | 0.56 | 6.31 | 4.21 | 0.24 | 6.32 |
| beam dist | 6.09 | 5.76 | 1.24 | 49.67 | 22.64 | 0.55 | 5.96 | 2.56 | 0.10 | 5.44 |
| beam ip | 6.52 | 5.80 | 0.83 | 53.31 | 22.16 | 0.36 | 5.15 | 2.72 | 0.10 | 3.05 |

efficiency

|  | $\boldsymbol{\pi}^{ \pm}$ | $\boldsymbol{\pi}^{ \pm}:$:2nd | $\boldsymbol{\gamma}$ :2nd | $\boldsymbol{\gamma}$ :beam $\boldsymbol{\pi}^{\mathbf{0}}$ | $\boldsymbol{\gamma}^{\text {:other } \boldsymbol{\pi}^{\mathbf{o}}}$ | $\boldsymbol{e}^{-}$ | $\boldsymbol{e}^{+}$ | $\boldsymbol{p}$ | $\boldsymbol{\text { other }}$ | $\boldsymbol{\mu}^{ \pm}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| chi2 proton | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| track score | 92.60 | 91.65 | 78.94 | 93.93 | 94.63 | 94.53 | 90.78 | 29.42 | 31.13 | 95.75 |
| median dEdX | 83.81 | 71.54 | 10.53 | 11.14 | 12.68 | 11.44 | 15.35 | 26.89 | 27.84 | 72.68 |

## purity

|  | $\boldsymbol{\pi}^{ \pm}$ | $\boldsymbol{\pi}^{ \pm}: \mathbf{2 n d}$ | $\boldsymbol{\gamma}:$ 2nd | $\boldsymbol{\gamma}$ :beam $\boldsymbol{\pi}^{\mathbf{0}}$ | $\boldsymbol{\gamma}$ :other $\boldsymbol{\pi}^{\mathbf{0}}$ | $\boldsymbol{e}^{-}$ | $\boldsymbol{e}^{+}$ | $\boldsymbol{p}$ | other | $\boldsymbol{\mu}^{ \pm}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| chi2 proton | 18.40 | 9.70 | 1.04 | 15.97 | 7.27 | 0.20 | 2.41 | 35.78 | 1.43 | 7.80 |
| track score | 24.54 | 12.80 | 1.18 | 21.60 | 9.90 | 0.27 | 3.15 | 15.16 | 0.64 | 10.76 |
| median dEdX | 37.38 | 16.82 | 0.26 | 4.31 | 2.23 | 0.05 | 0.90 | 23.32 | 0.97 | 13.75 |

backtrack particle counts

| $\pi^{ \pm}$ | $\gamma$ | counts | fractions |
| ---: | ---: | ---: | ---: |
| 0 | 1 | 741 | 0.20 |
| 0 | 0 | 620 | 0.17 |
| 0 | 2 | 520 | 0.14 |
| 1 | 0 | 497 | 0.13 |
| 0 | 3 | 305 | 0.08 |
| 1 | 1 | 282 | 0.08 |
| 2 | 0 | 180 | 0.05 |
| 1 | 2 | 156 | 0.04 |
| 0 | 4 | 152 | 0.04 |
| 1 | 3 | 51 | 0.01 |


| $\gamma$ | counts | fractions |
| ---: | ---: | ---: |
| 0 | 1328 | 0.36 |
| 1 | 1061 | 0.29 |
| 2 | 695 | 0.19 |
| 3 | 359 | 0.10 |
| 4 | 174 | 0.05 |
| 5 | 58 | 0.02 |
| 6 | 21 | 0.01 |
| 7 | 6 | 0.00 |
| 8 | 3 | 0.00 |
| 11 | 1 | 0.00 |
| $\boldsymbol{\pi} \pm$ | counts | fractions |

single_pion_production

| $\pi^{ \pm}$ | $\gamma$ | counts | fractions |
| ---: | ---: | ---: | ---: |
| 0 | 0 | 2175 | 0.76 |
| 1 | 0 | 651 | 0.23 |
| 2 | 0 | 31 | 0.01 |
| $\gamma$ | counts | fractions |  |
| 0 | 2857 | 1.00 |  |
| $\pi^{ \pm}$ | counts | fractions |  |
| 0 | 2175 | 0.76 |  |
| 1 | 651 | 0.23 |  |
| 2 | 31 | 0.01 |  |
| non-beam | counts | fractions |  |
| 21 | 787 | 0.28 |  |
| 0 | 645 | 0.23 |  |
| 2 | 606 | 0.21 | 23 |

- In absorption region pip events:

1. 1328 have no $\gamma$
2. 2411 have no $\pi^{ \pm}$
3. 1317 have $>1 \gamma, 1061$ have $1 \gamma$
4. 1295 have $>0 \pi^{ \pm}$
$\Rightarrow$ identify the $\pi^{ \pm}$and $\gamma$ that was missed $\rightarrow$ high efficiency $\pi^{ \pm}$and $\gamma$ selection

- In absorption region cex events:

1. 219 have no $\gamma$
2. 384 have $2 \gamma, 859$ have $1 \gamma$
3. 164 have $>2 \gamma$
$\triangleright$ identify the $\gamma$ that was missed $\rightarrow$ high efficiency $\gamma$ selection

- In absorption region spip events:

1. 2175 have no pions, 651 have $1 \pi^{ \pm}, 31$ have $2 \pi^{ \pm}$
2. 2212 have at least 1 PFO not originating from the beam interaction

- the events with 2 backtracked $\pi^{ \pm}$is likely due to broken tracks

