
Gordon Crone, Eric Flumerfelt, Giovanna Lehmann Miotto
DAQ General Meeting
25 March 2024

The OKS Configuration Framework

OKS (Object Kernel Support) is a suite of packages originally written for the ATLAS data
acquisition effort. Its features include:

● The ability to define object oriented classes which are represented through a schema, used
to generate the corresponding c++ / python classes.

● A class in OKS has a class name, basic (int, vector, string,...) and complex (other classes)
data members, called respectively "attributes" and "relationships", and methods. OKS
classes can also inherit from other classes to extend their functionality.

● A OKS configuration is a collection of instances of one or more OKS classes (“objects”),
and is stored in a database.

https://github.com/DUNE-DAQ/dal/blob/develop/docs/README.md

What is OKS?

https://gitlab.cern.ch/atlas-tdaq-software/oks
https://github.com/DUNE-DAQ/dal/blob/develop/docs/README.md

• Configuration Systems are hard
– Experience across experiments shows shortcomings of different configuration

management systems
• Prototype system using jsonnet/moo sufficient for early operation

– No schema/configuration editors
– Re-generate complete configuration to modify parameters
– Must generate configuration each time, hard to change behavior of generation

• Use pre-existing configuration system
– Free up effort to work on integration into workflow

• Reduce configuration duplication and allow use of references within
configuration

• Load complete configuration and make accessible from C++ code
• OKS has been in use in ATLAS trigger, a similar system to DUNE-DAQ

Why OKS?

• Database: A collection of OKS objects. Objects have attributes (configuration
values) and relations (references to other objects). Databases are currently
stored in XML files

• Schema: A collection of object definitions. Schemas are currently stored in XML
files and passed through code-generation (similar to moo)

• File includes: Schemas can include other schemas. Databases can include other
databases and schemas. For a Database to be valid, all objects in database
must be defined in the included schema tree

OKS in DUNE-DAQ: Key Concepts

DUNE-DAQ-specific schemas are stored in the coredal and appdal repositories.
coredal schemas describe the structure of the configuration, while appdal schemas
are concerned with the configuration of individual components.

• Session: Entry point for DUNE-DAQ configurations, defines several top-level
configuration parameters

• Segment: Collection of related applications within a Session. Segments can
contain other Segments, while Session only has one “root” Segment

• DaqApplication: Represents a single application, with fixed queues,
connections, and DAQModules

• SmartDaqApplication: Represents a single application, but generates queues,
connections, and modules via an application-specific implementation of a
generator function

– This allows for separation between run-time organization (messaging connections)
and configuration of the individual modules

OKS in DUNE-DAQ: Description of the DAQ

• SmartDaqApplication represents a “self-constructing” application through the
implementation of a “generate_modules” method, which creates a known
application structure including modules and messaging queues and network
connections
– generate_modules ingests application-specific module configurations (e.g.

DFApplication is given a TRB and DataWriter configuration) to produce
fully-configured applications

• Current SmartDaqApplication implementations include DFApplication,
ReadoutApplication, TriggerApplication, and more

– These implementations represent all of the applications needed for a basic
DUNE-DAQ Session

– This allows for very static configurations, as run-time messaging links are generated
on-the-fly

– Generation is deterministic for a given configuration, and can be performed outside
of the running DAQ context to check output of generate_modules

OKS in DUNE-DAQ: More About SmartDaqApplication

https://github.com/DUNE-DAQ/appdal/tree/develop/src

• A number of database files have been written with parameters which rarely
change: https://github.com/DUNE-DAQ/appdal/tree/develop/config/appdal

• Specific test sessions can use these databases to reduce the number of
additional objects needed to fully describe the configuration

– Run-time objects are currently stored in the test/config directory of appdal:
https://github.com/DUNE-DAQ/appdal/tree/develop/test/config

OKS in DUNE-DAQ: Static and Generated Configuration Databases

https://github.com/DUNE-DAQ/appdal/tree/develop/config/appdal
https://github.com/DUNE-DAQ/appdal/tree/develop/test/config

• Main Documentation page:
https://github.com/DUNE-DAQ/oksconfgen/wiki/Setting-up-a-dunedaq-v5.0.0-
Development-Area

• Demo
– Learn about SmartDaqApplications in a session

• listApps and generate_modules_test
– listApps test-session sourcecode/appdal/test/config/test-session.data.xml
– Generate_modules_test test-session df-01

sourcecode/appdal/test/config/test-session.data.xml
– Use pre-made boot.json to run NanoRC

• nanorc --partition-number 2 test_config test-session boot conf wait 10 start_run 111
wait 60 stop_run scrap terminate

– Check output for expected data
• h5dump -H swtest_run000111_0000_df-01_datawriter-1_*|less

• drunc:
https://github.com/DUNE-DAQ/drunc/wiki/Testing-the-OKS-configuration

OKS In Action: Running the test-session

https://github.com/DUNE-DAQ/oksconfgen/wiki/Setting-up-a-dunedaq-v5.0.0-Development-Area
https://github.com/DUNE-DAQ/oksconfgen/wiki/Setting-up-a-dunedaq-v5.0.0-Development-Area
https://github.com/DUNE-DAQ/drunc/wiki/Testing-the-OKS-configuration

• oksconfgen provides scripts (and Python libraries) for generating the most
commonly-changed parts of a configuration

– Replaces some functionality from daqconf, but configuration generation will be much
more limited in the OKS system

• Demo
– Using dromap2oks to convert existing DRO map

• dromap2oks DetectorReadoutMap.json
– Using generate_readoutOKS to create Readout session

• generate_readoutOKS -i config/appdal/fsm.data.xml -s
DetectorReadoutMap.data.xml generated-ru-segment.data.xml

– Using consolidate_files to create new Session from existing
• consolidate_files -i generated-ru-segment.data.xml -i

sourcecode/daqsystemtest/integtest/minimal_system_quick_test.data.xml
generated-session.data.xml

OKS In Action: Generating a Readout Segment

• OKS Databases are XML, can be edited by hand
• But, dbe provides GUI editors which keep the databases formatted and sorted,

as well as resolving includes to ensure that configuration is complete
• Demo

– Open generated session file in editor, show objects
– Open generated session file in dunedaq_dbe, show how objects are represented and

linked together
• https://dune-daq-sw.readthedocs.io/en/latest/packages/dbe/

OKS In Action: Changing a Configuration Parameter

https://dune-daq-sw.readthedocs.io/en/latest/packages/dbe/

• A nice feature of OKS is that objects can be disabled at the Session level
– This allows for “superset” configurations
– Resource Manager implementation could use enable/disable to generate Session

• Demo
– Adding object to Session’s disabled relationship in GUI editor
– Using oks_enable to re-enabled disabled object

OKS In Action: Enabling/Disabling an Object

• Demo
– Use existing objects to create an additional DFApplication instance

OKS In Action: Adding Applications to a Segment

• DAQModule::init signature changed to give a handle to the OKS objects
– Retrieve current module object by ID
– Access attributes of module object
– Access other parts of the configuration if needed

• Demo
– https://github.com/DUNE-DAQ/listrev/blob/138c813a4eeac1e31ad5a1a450a234900

6e8de93/plugins/ReversedListValidator.cpp#L54
– https://github.com/DUNE-DAQ/listrev/blob/138c813a4eeac1e31ad5a1a450a234900

6e8de93/plugins/ReversedListValidator.cpp#L82
– https://github.com/DUNE-DAQ/listrev/blob/138c813a4eeac1e31ad5a1a450a234900

6e8de93/schema/listrev/listrev.schema.xml#L111
– (Warning: advanced usage!)

https://github.com/DUNE-DAQ/dfmodules/blob/6c787a25bd14e6bc17857e623b25a
517c5615025/plugins/TriggerRecordBuilder.cpp#L117

OKS In Action: Retrieving Configuration Data from Your Code

https://github.com/DUNE-DAQ/listrev/blob/138c813a4eeac1e31ad5a1a450a2349006e8de93/plugins/ReversedListValidator.cpp#L54
https://github.com/DUNE-DAQ/listrev/blob/138c813a4eeac1e31ad5a1a450a2349006e8de93/plugins/ReversedListValidator.cpp#L54
https://github.com/DUNE-DAQ/listrev/blob/138c813a4eeac1e31ad5a1a450a2349006e8de93/plugins/ReversedListValidator.cpp#L82
https://github.com/DUNE-DAQ/listrev/blob/138c813a4eeac1e31ad5a1a450a2349006e8de93/plugins/ReversedListValidator.cpp#L82
https://github.com/DUNE-DAQ/listrev/blob/138c813a4eeac1e31ad5a1a450a2349006e8de93/schema/listrev/listrev.schema.xml#L111
https://github.com/DUNE-DAQ/listrev/blob/138c813a4eeac1e31ad5a1a450a2349006e8de93/schema/listrev/listrev.schema.xml#L111
https://github.com/DUNE-DAQ/dfmodules/blob/6c787a25bd14e6bc17857e623b25a517c5615025/plugins/TriggerRecordBuilder.cpp#L117
https://github.com/DUNE-DAQ/dfmodules/blob/6c787a25bd14e6bc17857e623b25a517c5615025/plugins/TriggerRecordBuilder.cpp#L117

• When dunedaq-v5.0.0 is ready, we would like developers to assist in evaluating
the functional state of the system

– Test provided configurations and give feedback on any difficulties encountered
– Prepare new, more complex configurations
– Validate approach to the configuration description

• SmartDaqApplications ingest configuration objects and create full applications
– Provide overall feedback on user (un)friendliness
– Complete transition of remaining DAQModules (ctbmodules, crtmodules, wibmod,

sspmodules, daphnemodules)
– Replicate and test NP04 and NP02 configurations

To-Do List

• #daq-oks-integration Slack channel
• Github Issues

Questions?

