Measuring the neutron-argon inelastic cross-section at the 2x2

2x2 First Analysis Meeting (03/27/2024)

Presented by Nicholas Carrara on behalf of the nAr-inelastic xsec group

n-Ar Inelastic Cross-section

Analysis Plan

- 1. Use a convolutional neural network to classify events by interaction type.
- Use a convolutional neural network (*BlipSegmentation*) to semantically
 label points according to Arrakis.
- 3. Collect track points and feed them into the hierarchical clustering algorithm (*BlipNet*).
 - a. For every node in the resulting / dendrogram, feed the results into a point-cloud neural network which assigns a score for how "proton-like" the cluster is, as well as how pure.

Neutrino identification Proton identification/endedness Light pileup mitigation Vertexing

(3)

(4)

Arrakis

(https://github.com/Neutron-Calibrationin-DUNE/ArrakisND/tree/develop) is a framework for generating:

- High-level variables associated to charge and light data which can _____ be used to train ML algorithms and benchmark performance.
- CAF "truth" objects which can be used to benchmark reconstruction algorithm performance.
- Running Arrakis generates a new h5 file with "FLOW" replaced with "ARRAKIS".

new_charge_data_type = np.dtype([('event_id', 'i4'), 'particle', 'i4'), 'physics_micro', 'i4'), 'physics_macro', 'i4'), 'unique_topology', 'i4'), 'vertex', 'i4'), 'tracklette_begin', 'i4'), ('tracklette_end', 'i4'), 'fragment_begin', 'i4'), 'fragment_end', 'i4'), 'shower begin', 'i4')

track_data_type = np.dtype([('event_id', 'i4'), ('track_id', 'i4'), ('tracklette_ids', 'i4', (1, 20)), ('start', 'f4', (1, 3)), ('end', 'f4', (1, 3)), ('start_hit', 'f4', (1, 3)), ('end_hit', 'f4', (1, 3)), ('dir', 'f4', (1, 3)), ('dir_hit', 'f4', (1, 3)), 'enddir_hit', 'f4', (1, 3)), ('len_gcm2', 'f4'), ('len_cm', 'f4'), ('truth', 'i4', (1, 20)), ('truthOverlap', 'f4', (1, 20)),

- Arrakis splits up *files* among jobs and *events* among worker nodes.
- Dedicated container on NERSC.
- Runs over all of MiniRun5 in about **15 minutes** (~1000 files) with 25 separate jobs (should scale linearly with number of jobs).
- Compare that to larnd-sim and flow which take approximately
 10 minutes per file.

We are also working on an event display, which can be launched following the instructions here

(https://github.com/Neutr on-Calibration-in-DUNE/A rrakisND/blob/develop/arr akis_nd/utils/display/REA DME.md)

Next steps for Arrakis:

- Complete basic labeling logic plugins.
- Coordinate with 2x2 analysis group to add Arrakis to the flow chain.
- Set up some benchmark datasets to quantify performance of labeling logic.
- Make the event display available to login nodes on perlmutter.
- We have lots of ideas for what to add to the event display, but are welcome to whatever people would like to see (please give us suggestions)!

Neutrino Classification Network

Multi-class classification Problem

Classification of interaction events

initial labels CCe, CCmu, NC

- 1. Uses a Convolutional Neural Network
- 2. Independent of Arrakis.
- 3. Create dataset for each flow file
- 4. Build and Evaluate the model (CNN)

Blip Segmentation

- 1. Updates required with new format
- 2. Evaluate the network with analysis tasks

Hierarchical Clustering

We want to find **protons** from a **neutron parent**.

The neutron is **invisible**, so it is just a short disjoint proton track we are looking for. Current reconstruction is not good at **short tracks**.

Can we use a simple clustering algorithm to cluster these short proton tracks very well? *Very well* means that the clusters contain **all** of the proton track and **nothing but** the proton track (efficient and pure).

Idea: hierarchical clustering, where we walk over the **single linkage tree** and try to find a sweet spot

8

If our target are clusters with high purity and completeness (purity ~ 99%), then MiniRun5 predicts:

- An event rate of 1.22%
- For three days of running (1E19 protons), we expect roughly 2K events with isolated proton tracks from neutron-inelastic interactions.
- Need to see how this diminishes with an optical detector constraint.

CRO Proton Detection

Truth selection: require LAr totally contained* proton hailing from neutron parent; no neutrino vertex criteria

Reconstructed topology and detection efficiency strongly tied to LArPix field, electronics response

12,922 detected protons in 1E19 POT

55% detection efficiency, where proton is detected if at least one hit is reconstructed

*Geant4 proton trajectory endpoints must reside in the LAr active volume

CRO Detection Features

Opportunity for improved timing resolution with proton tracks spanning multiple active volumes

Unsurprisingly, improved track angle fidelity with increased track length

UCDAVIS

Next Steps

Viability Studies:

- Need to understand effects of secondary neutrons on energy resolution.
- Evaluate the incidence and impact of light pileup and implications on signal yield and timing resolution

Analysis/Algorithms:

- Develop BlipSegmentation to reconstruct:
 - tracks
 - \circ vertices
 - neutrinos
- Develop BlipNet for classifying pure proton tracks.
- Develop end-to-end analysis software for deployment on data.
 UCDAVIS