
RNTUPLE API REVIEW



FROM JAKOB: SCOPE

 The review should include the RNTuple public interface in the ROOT sources

 The ROOT team would in particular appreciate input on the following aspects: 
 Completeness: is the RNTuple API sufficiently powerful to support experiment I/O 

workflows? 

 Adherence to modern C++ best practices (e.g., core guidelines) 

 Error handling compatible with experiment frameworks 

 Future-proofing / evolvability: will we be able to evolve the interface in the future in a 
backwards-compatible way? 

 Usability for end users using C++ and/or Python 

 Compatibility: ease of migration from the TTree interfaces



ARCHITECTURE

 Description: https://github.com/root-
project/root/blob/master/tree/ntuple/v7/doc/architecture.md

 Top level: TTree ~ RNTupleReader/RNTupleWriter
 Event iteration for reading/writing 

 Any fundamental downside?

https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/architecture.md
https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/architecture.md


RNTUPLEWRITER

 ROOT: ROOT::Experimental::RNTupleWriter Class Reference (cern.ch)

 From ROOT Architecture:
 The RNTupleWriter is the primary interface to create an RNTuple. 

 The writer takes ownership of a given model. 

 The writer can either add an RNTuple to an existing ROOT file (RNTupleWriter::Append()) 
or create a new ROOT file with an RNTuple (RNTupleWriter::Recreate()). 

 Once created, entries are added to an RNTuple either serially (RNTupleWriter::Fill()) or in 
concurrently in multiple threads with the RNTupleParallelWriter. 

 Once committed (e.g. by releasing the RNTupleWriter), the RNTuple is immutable and 
cannot be amended. An RNTuple that is currently being written cannot be read.

https://root.cern.ch/doc/master/classROOT_1_1Experimental_1_1RNTupleWriter.html


RNTUPLEREADER

 ROOT: ROOT::Experimental::RNTupleReader Class Reference (cern.ch)

 From ROOT Architecture:
 The RNTupleReader is the primary interface to read and inspect an RNTuple. 

 An RNTupleReader owns a model: 
 either a model created from the on-disk information or an imposed, user-provided model. 

 The user-provided model can be limited to a subset of fields. 

 Data is populated to an explicit REntry or the model's default entry through RNTupleReader::LoadEntry().

 The reader can create RNTupleView objects for the independent reading of individual 
fields.

 The reader can create RBulk objects for bulk reading of individual fields.

 Additionally, the reader provides access to a cached copy of the descriptor.

 It can display individual entries (RNTupleReader::Show()) and summary information 
(RNTupleReader::PrintInfo()).

https://root.cern.ch/doc/master/classROOT_1_1Experimental_1_1RNTupleReader.html

	Slide 1: RNTuple API Review
	Slide 2: From Jakob: Scope
	Slide 3: Architecture
	Slide 4: RNTupleWriter
	Slide 5: RNTupleReader

