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Issues

o How to find normal mode emittances (eigen-emittances) when optics
functions are not known?

- Eigen-emittances as well as optics functions can be determined from
covariance matrix.

e How to suppress halo contribution to covariance matrix in a self-consistent
way to obtain emittances of the beam core?

- Iterative procedure for nonlinear fit of the particle distribution in the phase
space with a Gaussian or other smooth function.

e Bonus point: how big the error can be when using mechanical momenta
instead of canonical ones?
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Definitions

Phase space vector:
z={x, PV, P,,s—cpt, O}
Canonical momenta in units of the reference value p,=mc/,:
e
P, =(p, +EM/ Po
Energy deviation (disguised as momentum)
§=(r =7 Bso

Assume (for now) there is no tails and compute covariance matrix (X- matrix)

N N
2i,j :iZéﬂ(k)éfk), é/i(k):Zi(k)_zi’ Z; =izsz), 1=1..,6
N = N i3

Basic assumption: particle distribution is a function of quadratic form

D) =TI =D E0 = 25

i,j=1
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Eigen-Emittances from X- matrix

With X- matrix known, how to find the normal mode emittances?

- X- matrix has positive eigenvalues but they are useless unless the matrix of
transformation to diagonal form is symplectic (generally not the case)

- solution suggested by theory developed by V.Lebedev & A.Bogacz :

Consider a product Q=S>" of inverse - matrix and symplectic unity matrix

0O 1 0 0 0 O

-1 0 0 0 0 O
- 0O 0 0 1 0 O

0 0 -1 0 0 O0f

0o 0 0 0 0 1

0O 0 0 0 -1 0

Matrix Q2 has purely imaginary eigenvalues which are inverse eigen-emittances :

m=1 2,3

m = !
m m

(All mathematics will be presented in a MAP note)
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Eigen-Vectors of Matrix Q

. . . . / I
Using real and imaginary parts of eigen-vectors v; =Rev;, v; =Imy,
as columns we can build a matrix:

V ={v;,~v;,v5,~v5, ¥,
which is symplectic, VtSV=S, and brings Q to diagonal form:
V'QV=SE  E=diag(—,—,—,—,—, ).
The quadratic form ® takes the form:

D = (é» 2—14») N (gg’ Hf) Z éZm—l + éZm 22 V—l g

€m m=1 &m

Eigen-vectors provide information on 3- and dispersion functions :
2
ﬂxm = ‘(YZm)l‘ 1 ym ‘(WZm)3‘ sm ‘(WZm)S‘ m :1, 2, 3

— 5 :V16V55 _V15V5e D y V36V55 V35V56
o V66V55 _V65V56 b o V66V55 V65V56
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Canonical vs Mechanical Momenta

Suppose that (in canonical variables) the distribution is such that:

2
p?

2 all correlations =0

<xX*>=<y’>=0°, <P’>=<P}>=0
Now if we use mechanical momenta in solenoidal field (K=B,/2Bp):

<py>=—<px>=Ko?, <p;>=<P!>+K*<y’>=0;+K’c’ =< p; >

and for eigen-emittances we obtain wrong values:
e, =ec[1+2K?B2£2|K | B 1+ K?Bl], & =0,0, B =0cl0o,

However, the 4D emittance remains
correct:

£€, = £
Matched g, in a solenoid: g

2B
ﬁJ_ :_,0 — KﬁJ_ =1

z

Use canonical momental | T
KB,
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How to Suppress Halo Contribution?

And to do this in a self-consistent way?

- a simple heuristic method is to introduce weights proportional to some
degree of the distribution function. This leads to an iterative procedure

N
7 _ (k) k) _ 5K _ = (k) (k)
Zi _Zwkzi /Zwk! é’i Z Zwké/ é’ /Zwk’ (1)
For Gau53|an W, = exp[——(g’ (k) Z‘lg ("))] o belng a flttlng parameter (O<a<1)
21/2 21/2
1.00 / [
0.95; a=0.1 " M
[ I a=0.1
0.90 Lor
ol «=0.5 f
> o3 2 =05
080 | I
O.Bj ‘ ‘ ‘ ‘ ‘ ‘
5‘0 180 5(;0 1060 5060 1 ‘104 N 50 100 500 1000 so00 11100 N
Square root of ¥ from eq.(1) averaged over 25 Square root of X from eq.(1) averaged over 25
realizations of 1D Gaussian distribution with realizations of superposition of 1D Gaussian
o =1as function of the number of particles N. distributions with o =1(90%) and o =3(10%)

This method is imprecise and ambiguous = something based on a more
solid foundation is needed.
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Nonlinear Fit of the Klimontovich Distribution

6=+ > dup(z-2) =+ > [ [5(2,~2)

k=1 i=1

We want to approximate it with a smooth function, e.g. Gaussian

_ Ui _l 1
F(Q—(Zﬂ)n,zmexp[ 2(52 ¢l

where 7 is the fraction of particles in the beam core,
via the minimization problem

TT| F-G| dz..dz, = sz...T(F2 —2FG)dz,..dz, + ]9...O_fC52dzl...dzn — min

—00 —0o0 —00 —00 —00 —00

or the maximization problem for the 15t term in the r.h.s. taken with the
opposite sign

M(Z,2,n) = T...T(ZFG ~F?)dz,..dz, =

—00 —0o0

N

For n=6 there is n(n+3)/2+1=28 fitting parameters — convergence too slow
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Rigorous lterative Procedure

By differentiating M (Z.Z.7)  w.rt. fitting parameters we recover
equations which can be solved iteratively.

For average values of coordinates the equations coincide with heuristic
ones with a=1

i (k) exp[ é’(k) Z—lg(k))]/zexp[ _(é»(k) 2—1éz(k))] é'(k) _Z(k) z
Z —)ZWk z ;

k=1
for weighted partlcles)

We can keep n fixed (i.e. set the fraction of particles taken into account)

Then for - matrix we get

=2 <k>g;k>exp[—§(g<“,z1;“)]/( > expl-5 ("2 1c‘k’)]—2n,2+1]

For n —»1 some damping is necessary in n=6 case to avoid oscillations:

20 = 1-d)=D 4 dzo™D g ~0.8

(Again, mathematics will be presented in a MAP note)
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10
Rigorous lterative Procedure (cont’d)

We can try to find the optimal fraction of particles 7 for the fit.

d
From equation an M(z,Z,7)=0 we get
n

n/2 N

Zexp[ ({ 27 (=2 -1,

Equations for average values of coordinates remain the same,

whereas for X- matrix we obtain expression with an extra factor of 2 (1)
compared to the heuristic one

5,223 cO¢expl- ("3 *C”)]/Zexp[ L2

Damping is not necessary in this case.

For n=6 in all cases just 20-30 iterations are required to achieve
precision <10, it takes Mathematica ~13 seconds with N= 104 on my
home PC. For a Fortran or C code it will be a fraction of a second.
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1D Precision Test

11
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1D Precision Test (cont’d)
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Fraction of beam in the core averaged over 25
realizations of superposition of 1D Gaussian
distributions with ¢ =1(90%) and o =3(10%) .

With N =10% 77 =0.967: 2/3 of the o =3
component were absorbed by the core and
only 1/3 rejected.

Data histogram for one of
realizations and fitted distribution
function
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The Algorithm

13

« Decide if the design trajectory (e.g. Z =0) should be taken as the
reference or the average coordinates should be computed along with
covariance matrix.

» Compute average coordinates Z (if needed), the covariance matrix =
and (optionally) the optimal fraction of particles 7 in the same iterative
process.

| would suggest to perform calculations with 7 =1 and 7 = 7ytima

e Find eigen-emittances = imaginary parts of eigenvalues of matrix Q'=-3S
o Normalize eigenvectors (Vo 1, SV ) =—2i , m=1,2,3 being the mode #

o To relate eigen-modes to the phase space planes compute and compare
eigen-mode projections

P(m — p) - (((_)/2m—1)2p—1(((_)/2/m—1)2p o (7_)/2/m—1)2p—1(7_)/2m—1)2p

p =1,2,3 being the plane # (horz, vert, long)

Eigen-Emittances from Tracking — Y.Alexahin,

MAP Meeting 02/08/2013



14
Application to the Front End

u+ longitudinal distributions right after the rotator (some old version by C.Y.):

11
]

i Al

|

=70 a 70 3 a 03

Z — vt (cm) O =(v 1) B’ 10

Red lines show projections of the fitted distribution for 7 =1.
— The long tails are obviously rejected even for =1

_

3.94 1.59 1.42
Top=0.67 3.20 1.26 1.15
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Application to HFOFO Snake

N, in 150<p<300 MeV/c range

17000 £
16000
15000
14000 |
13000 |

12000 F

z (m) 770ptirf1a|

0.70 -

u+ normalized emittances for r =1.

0.60 -

initial 3.94 1.59 1.42 :
final 1.36 0.70 0.56
ratio I/f 2.91 2.27 2.56 — 20 a0 e s 100 120

z(m)

6D cooling factor = 16.88
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Summary

16

e The proposed algorithm is efficient and fast,
e | am ready to help with its implementation in G4BL and ICOOL.

e Performance of the HFOFO snake is really better than reported before
(there was a mistake: z in m instead of cm)
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