Computation of Eigen-Emittances
 (and Optics Functions!)
 from Tracking Data

Y. Alexahin (FNAL APC)

- How to find normal mode emittances (eigen-emittances) when optics functions are not known?
- Eigen-emittances as well as optics functions can be determined from covariance matrix.
- How to suppress halo contribution to covariance matrix in a self-consistent way to obtain emittances of the beam core?
- Iterative procedure for nonlinear fit of the particle distribution in the phase space with a Gaussian or other smooth function.
- Bonus point: how big the error can be when using mechanical momenta instead of canonical ones?

Definitions

Phase space vector:

$$
\underline{z}=\left\{x, P_{x}, y, P_{y}, s-c \beta_{0} t, \delta\right\}
$$

Canonical momenta in units of the reference value $p_{0}=m c \beta_{0} \gamma_{0}$:

$$
P_{x}=\left(p_{x}+\frac{e}{c} A_{x}\right) / p_{0}
$$

Energy deviation (disguised as momentum)

$$
\delta=\left(\gamma-\gamma_{0}\right) / \beta_{0}^{2} \gamma_{0}
$$

Assume (for now) there is no tails and compute covariance matrix (Σ - matrix)

$$
\Sigma_{i, j}=\frac{1}{N} \sum_{k=1}^{N} \zeta_{i}^{(k)} \zeta_{j}^{(k)}, \quad \zeta_{i}^{(k)}=z_{i}^{(k)}-\bar{z}_{i}, \quad \bar{z}_{i}=\frac{1}{N} \sum_{k=1}^{N} z_{i}^{(k)}, \quad i=1, \ldots, 6
$$

Basic assumption: particle distribution is a function of quadratic form

$$
\Phi(\underline{\zeta})=\left(\underline{\zeta}, \Sigma^{-1} \underline{\zeta}\right) \equiv \sum_{i=1}^{6} \zeta_{i}\left(\Sigma^{-1} \underline{\zeta}\right)_{i}=\sum_{i, j=1}^{6} \Sigma_{i j}^{-1} \zeta_{i} \zeta_{j}
$$

Eigen-Emittances from Σ - matrix

With Σ - matrix known, how to find the normal mode emittances?

- Σ - matrix has positive eigenvalues but they are useless unless the matrix of transformation to diagonal form is symplectic (generally not the case)
- solution suggested by theory developed by V.Lebedev \& A.Bogacz :

Consider a product $\Omega=\mathrm{S} \Sigma^{-1}$ of inverse Σ - matrix and symplectic unity matrix

$$
\mathbf{S}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 0
\end{array}\right),
$$

Matrix Ω has purely imaginary eigenvalues which are inverse eigen-emittances :

$$
\lambda_{2 m-1}=-\frac{i}{\varepsilon_{m}}, \quad \lambda_{2 m}=\frac{i}{\varepsilon_{m}}, \quad m=1,2,3
$$

(All mathematics will be presented in a MAP note)

Eigen-Vectors of Matrix Ω

Using real and imaginary parts of eigen-vectors $\underline{v}_{i}^{\prime} \equiv \operatorname{Re} \underline{v}_{i}, \quad \underline{v}_{i}^{\prime \prime} \equiv \operatorname{Im} \underline{v}_{i}$ as columns we can build a matrix:

$$
\mathrm{V}=\left\{\underline{v}_{1}^{\prime},-\underline{v}_{1}^{\prime \prime}, \underline{v}_{3}^{\prime},-\underline{v}_{3}^{\prime \prime}, \underline{v}_{5}^{\prime},-\underline{v}_{5}^{\prime \prime}\right\}
$$

which is symplectic, $\mathrm{V}^{t} \mathrm{SV}=\mathrm{S}$, and brings Ω to diagonal form:

$$
\mathrm{V}^{-1} \Omega \mathrm{~V}=\mathrm{S} \Xi, \quad \Xi=\operatorname{diag}\left(\frac{1}{\varepsilon_{1}}, \frac{1}{\varepsilon_{1}}, \frac{1}{\varepsilon_{2}}, \frac{1}{\varepsilon_{2}}, \frac{1}{\varepsilon_{3}}, \frac{1}{\varepsilon_{3}}\right) .
$$

The quadratic form Φ takes the form:

$$
\Phi=\left(\underline{\zeta}, \Sigma^{-1} \underline{\zeta}\right) \rightarrow\left(\underline{\xi}, \Xi \underline{\Xi} \underline{)}=\sum_{m=1}^{3} \frac{\xi_{2 m-1}^{2}+\xi_{2 m}^{2}}{\varepsilon_{m}}=2 \sum_{m=1}^{3} \frac{J_{m}}{\varepsilon_{m}}, \quad \underline{\xi}=\mathrm{V}^{-1} \underline{\zeta}\right.
$$

Eigen-vectors provide information on β - and dispersion functions :

$$
\begin{gathered}
\beta_{x m}=\left|\left(\underline{v}_{2 m}\right)_{1}\right|^{2}, \quad \beta_{y m}=\left|\left(\underline{v}_{2 m}\right)_{3}\right|^{2}, \quad \beta_{s m}=\left|\left(\underline{v}_{2 m}\right)_{5}\right|^{2}, \quad m=1,2,3 \\
D_{x}=\frac{x}{\delta}=\frac{V_{16} V_{55}-V_{15} V_{56}}{V_{66} V_{55}-V_{65} V_{56}}, \quad D_{y}=\frac{y}{\delta}=\frac{V_{36} V_{55}-V_{35} V_{56}}{V_{66} V_{55}-V_{65} V_{56}} .
\end{gathered}
$$

Canonical vs Mechanical Momenta

Suppose that (in canonical variables) the distribution is such that:

$$
\left\langle x^{2}\right\rangle=\left\langle y^{2}\right\rangle=\sigma^{2},\left\langle P_{x}^{2}\right\rangle=\left\langle P_{y}^{2}\right\rangle=\sigma_{p}^{2} \text {, all correlations }=0
$$

Now if we use mechanical momenta in solenoidal field ($K=B_{z} / 2 B \rho$):

$$
\left\langle p_{x} y\right\rangle=-\left\langle p_{y} x\right\rangle=K \sigma^{2}, \quad\left\langle p_{x}^{2}\right\rangle=\left\langle P_{x}^{2}\right\rangle+K^{2}\left\langle y^{2}\right\rangle=\sigma_{p}^{2}+K^{2} \sigma^{2}=\left\langle p_{y}^{2}\right\rangle
$$

and for eigen-emittances we obtain wrong values:

$$
\varepsilon_{1,2}^{2}=\varepsilon_{0}^{2}\left[1+2 K^{2} \beta_{\perp}^{2} \pm 2|K| \beta_{\perp} \sqrt{1+K^{2} \beta_{\perp}^{2}}\right], \quad \varepsilon_{0}=\sigma_{p} \sigma, \quad \beta_{\perp}=\sigma / \sigma_{p}
$$

However, the 4D emittance remains correct:

$$
\varepsilon_{1} \varepsilon_{2}=\varepsilon_{0}^{2}
$$

Matched β_{\perp} in a solenoid:

$$
\beta_{\perp}=\frac{2 B \rho}{B_{z}} \rightarrow K \beta_{\perp}=1
$$

Use canonical momenta!

How to Suppress Halo Contribution?

And to do this in a self-consistent way?

- a simple heuristic method is to introduce weights proportional to some degree of the distribution function. This leads to an iterative procedure

$$
\begin{equation*}
\bar{z}_{i}=\sum_{k=1}^{N} w_{k} z_{i}^{(k)} / \sum_{k=1}^{N} w_{k}, \quad \zeta_{i}^{(k)}=z_{i}^{(k)}-\bar{z}_{i}, \quad \Sigma_{i, j}=\sum_{k=1}^{N} w_{k} \zeta_{i}^{(k)} \zeta_{j}^{(k)} / \sum_{k=1}^{N} w_{k} \tag{1}
\end{equation*}
$$

For Gaussian $w_{\Sigma^{1 / 2}}=\exp \left[-\frac{\alpha}{2}\left(\underline{\zeta}^{(k)}, \Sigma^{-1} \underline{\zeta}_{\Sigma^{1 / 2}}^{(k)}\right)\right]$, α being a fitting parameter $(0<\alpha<1)$

Square root of Σ from eq.(1) averaged over 25 realizations of 1D Gaussian distribution with $\sigma=1$ as function of the number of particles N.

Square root of Σ from eq.(1) averaged over 25 realizations of superposition of 1D Gaussian distributions with $\sigma=1(90 \%)$ and $\sigma=3(10 \%)$

This method is imprecise and ambiguous \Rightarrow something based on a more solid foundation is needed.

Nonlinear Fit of the Klimontovich Distribution

$$
G(\underline{z})=\frac{1}{N} \sum_{k=1}^{N} \delta_{6 \mathrm{D}}\left(\underline{z}^{-\underline{z}^{(k)}}\right) \equiv \frac{1}{N} \sum_{k=1}^{N} \prod_{i=1}^{6} \delta\left(z_{i}-z_{i}^{(k)}\right)
$$

We want to approximate it with a smooth function, e.g. Gaussian

$$
F(\underline{\zeta})=\frac{\eta}{(2 \pi)^{n / 2} \sqrt{\operatorname{det} \Sigma}} \exp \left[-\frac{1}{2}\left(\underline{\zeta}, \Sigma^{-1} \underline{\zeta}\right)\right]
$$

where η is the fraction of particles in the beam core, via the minimization problem

$$
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}|F-G|^{2} d z_{1} \ldots d z_{n}=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}\left(F^{2}-2 F G\right) d z_{1} \ldots d z_{n}+\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} G^{2} d z_{1} \ldots d z_{n} \rightarrow \min
$$

or the maximization problem for the $1^{\text {st }}$ term in the r.h.s. taken with the opposite sign

$$
\begin{aligned}
& M(\bar{z}, \Sigma, \eta)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}\left(2 F G-F^{2}\right) d z_{1} \ldots d z_{n}= \\
& \frac{\eta}{(2 \pi)^{n / 2} \sqrt{\operatorname{det} \Sigma}}\left\{\frac{2}{N} \sum_{k=1}^{N} \exp \left[-\frac{1}{2}\left(\underline{\zeta}^{(k)}, \Sigma^{-1} \underline{\zeta}^{(k)}\right)\right]-\frac{\eta}{2^{n / 2}}\right\} \rightarrow \max
\end{aligned}
$$

For $n=6$ there is $n(n+3) / 2+1=28$ fitting parameters - convergence too slow

By differentiating $M(\bar{z}, \Sigma, \eta) \quad$ w.r.t. fitting parameters we recover equations which can be solved iteratively.

For average values of coordinates the equations coincide with heuristic ones with $\alpha=1$

$$
\begin{aligned}
& \bar{z}_{i}=\sum_{k=1}^{N} z_{i}^{(k)} \exp \left[-\frac{1}{2}\left(\underline{\zeta}^{(k)}, \Sigma^{-1} \underline{\zeta}^{(k)}\right)\right] / \sum_{k=1}^{N} \exp \left[-\frac{1}{2}\left(\underline{\zeta}^{(k)}, \Sigma^{-1} \underline{\zeta}^{(k)}\right)\right], \zeta_{i}^{(k)}= z_{i}^{(k)}-\bar{z}_{i} \\
&\left(\frac{1}{N} \sum_{k=1}^{N} \ldots \rightarrow \sum_{k=1}^{N} w_{k} \ldots / \sum_{k=1}^{N} w_{k}\right. \\
&\text { for weighted particles })
\end{aligned}
$$

We can keep η fixed (i.e. set the fraction of particles taken into account)
Then for Σ - matrix we get
$\Sigma_{i j}=\frac{1}{N} \sum_{k=1}^{N} \zeta_{i}^{(k)} \zeta_{j}^{(k)} \exp \left[-\frac{1}{2}\left(\underline{\zeta}^{(k)}, \Sigma^{-1} \underline{\zeta}^{(k)}\right)\right]\left(\left(\frac{1}{N} \sum_{k=1}^{N} \exp \left[-\frac{1}{2}\left(\underline{\zeta}^{(k)}, \Sigma^{-1} \underline{\zeta}^{(k)}\right)\right]-\frac{\eta}{2^{n / 2+1}}\right)\right.$

For $\eta \rightarrow 1$ some damping is necessary in $n=6$ case to avoid oscillations:

$$
\Sigma^{(i)}=(1-d) \Sigma^{(i-1)}+d \Sigma^{(\text {formula })}, \quad d \approx 0.8
$$

(Again, mathematics will be presented in a MAP note)

Rigorous Iterative Procedure (cont'd)

We can try to find the optimal fraction of particles η for the fit.
From equation $\frac{d}{d \eta} M(\bar{z}, \Sigma, \eta)=0$ we get

$$
\eta=\frac{2^{n / 2}}{N} \sum_{k=1}^{N} \exp \left[-\frac{1}{2}\left(\underline{\zeta}^{(k)}, \Sigma^{-1} \underline{\zeta}^{(k)}\right)\right], \quad \zeta_{i}^{(k)}=z_{i}^{(k)}-\bar{z}_{i}
$$

Equations for average values of coordinates remain the same,
whereas for Σ - matrix we obtain expression with an extra factor of 2 (!) compared to the heuristic one

$$
\Sigma_{i j}=2 \sum_{k=1}^{N} \zeta_{i}^{(k)} \zeta_{j}^{(k)} \exp \left[-\frac{1}{2}\left(\underline{\zeta}^{(k)}, \Sigma^{-1} \underline{\zeta}^{(k)}\right)\right] / \sum_{k=1}^{N} \exp \left[-\frac{1}{2}\left(\underline{\zeta}^{(k)}, \Sigma^{-1} \underline{\zeta}^{(k)}\right)\right]
$$

Damping is not necessary in this case.
For $n=6$ in all cases just 20-30 iterations are required to achieve precision $\leq 10^{-6}$, it takes Mathematica ~ 13 seconds with $N=10^{4}$ on my home PC. For a Fortran or C code it will be a fraction of a second.

Square root of Σ averaged over 25 realizations of 1D Gaussian distribution with $\sigma=1$ as function of the number of particles N.
$\delta_{\text {r.m.s. }}$

$\Sigma^{1 / 2}$

Square root of Σ averaged over 25 realizations of superposition of 1D Gaussian distributions with $\sigma=1(90 \%)$ and $\sigma=3(10 \%)$
$\delta_{\text {r.m.s. }}$

R.m.s. error in $\Sigma^{1 / 2}$ from above

Fraction of beam in the core averaged over 25 realizations of superposition of 1D Gaussian distributions with $\sigma=1(90 \%)$ and $\sigma=3(10 \%)$.

With $N=10^{4} \eta=0.967: 2 / 3$ of the $\sigma=3$ component were absorbed by the core and only $1 / 3$ rejected.

Data histogram for one of realizations and fitted distribution function

The Algorithm

- Decide if the design trajectory (e.g. $\bar{z}_{i}=0$) should be taken as the reference or the average coordinates should be computed along with covariance matrix.
- Compute average coordinates \bar{z}_{i} (if needed), the covariance matrix Σ and (optionally) the optimal fraction of particles η in the same iterative process.

I would suggest to perform calculations with $\eta=1$ and $\eta=\eta_{\text {optimal }}$

- Find eigen-emittances $=$ imaginary parts of eigenvalues of matrix $\Omega^{-1}=-\Sigma \mathrm{S}$
- Normalize eigenvectors $\quad\left(\underline{v}_{2 m-1}^{*}, S \underline{v}_{2 m-1}\right)=-2 i, m=1,2,3$ being the mode \#
- To relate eigen-modes to the phase space planes compute and compare eigen-mode projections

$$
P(m \rightarrow p)=\left(\underline{v}_{2 m-1}^{\prime}\right)_{2 p-1}\left(\underline{v}_{2 m-1}^{\prime \prime}\right)_{2 p}-\left(\underline{v}_{2 m-1}^{\prime \prime}\right)_{2 p-1}\left(\underline{v}_{2 m-1}^{\prime}\right)_{2 p}
$$

$p=1,2,3$ being the plane \# (horz, vert, long)

Application to the Front End

$\mu+$ longitudinal distributions right after the rotator (some old version by C.Y.):

Red lines show projections of the fitted distribution for $\eta=1$.

- The long tails are obviously rejected even for $\eta=1$

η	$\varepsilon_{\text {IIN }}(\mathrm{cm})$	$\varepsilon_{1 \mathrm{~N}}(\mathrm{~cm})$	$\varepsilon_{2 \mathrm{~N}}(\mathrm{~cm})$
1	3.94	1.59	1.42
$\eta_{\mathrm{opt}}=0.67$	3.20	1.26	1.15

Application to HFOFO Snake

$\varepsilon_{N}(\mathrm{~cm})$

$\mu+$ normalized emittances for $\eta=1$.

	$\varepsilon_{\\| \mathrm{N}}(\mathrm{cm})$	$\varepsilon_{1 \mathrm{~N}}(\mathrm{~cm})$	$\varepsilon_{2 \mathrm{~N}}(\mathrm{~cm})$
initial	3.94	1.59	1.42
final	1.36	0.70	0.56
ratio i / f	2.91	2.27	2.56

6 D cooling factor $=16.88$
N_{μ} in $150<p<300 \mathrm{MeV} / \mathrm{c}$ range

- The proposed algorithm is efficient and fast,
- I am ready to help with its implementation in G4BL and ICOOL.
- Performance of the HFOFO snake is really better than reported before (there was a mistake: z in m instead of cm)

