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Issues 

 How to find normal mode emittances (eigen-emittances) when optics 

functions are not known? 

- Eigen-emittances as well as optics functions can be determined from 

covariance matrix. 

 How to suppress halo contribution to covariance matrix in a self-consistent 

way to obtain emittances of the beam core? 

- Iterative procedure for nonlinear fit of the particle distribution in the phase 

space with a Gaussian or other smooth function. 

 Bonus point: how big the error can be when using mechanical momenta 

instead of canonical ones? 
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Definitions 

Assume (for now) there is no tails and compute covariance matrix (- matrix)  
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Basic assumption: particle distribution is a function of quadratic form  

Energy deviation (disguised as momentum) 
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Eigen-Emittances from - matrix  

With - matrix known, how to find the normal mode emittances? 

- - matrix has positive eigenvalues but they are useless unless the matrix of 

transformation to diagonal form is symplectic (generally not the case) 

-  solution suggested by theory developed by V.Lebedev & A.Bogacz : 

Consider a product                  of inverse - matrix and symplectic unity matrix  
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(All mathematics will be presented in a MAP note) 

3,2,1,, 212  m
ii

m

m

m

m







Matrix  has purely imaginary eigenvalues which are inverse eigen-emittances : 



Eigen-Vectors of Matrix   

Eigen-vectors provide information on - and dispersion functions : 
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which is symplectic, VtSV=S,  and brings  to diagonal form: 
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The quadratic form  takes the form: 
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Canonical vs Mechanical Momenta 

Use canonical momenta!  
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Suppose that (in canonical variables) the distribution is such that: 

0nscorrelatioall,, 222222  pyx PPyx 

Now if we use mechanical momenta in solenoidal field (K=Bz/2B): 

 222222222, ypxxyx pKyKPpKxpyp 

and for eigen-emittances we obtain wrong values: 
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How to Suppress Halo Contribution? 

And to do this in a self-consistent way? 

- a simple heuristic method is to introduce weights proportional to some 

degree of the distribution function. This leads to an iterative procedure  
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 For Gaussian                                            ,  being a fitting parameter (0<<1) 

This method is imprecise and ambiguous  something based on a more 

solid foundation is needed. 

Square root of  from eq.(1) averaged over 25 

realizations of superposition of 1D Gaussian 

distributions with  =1(90%) and  =3(10%)  
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 =1as function of the number of particles N. 



Nonlinear Fit of the Klimontovich Distribution 

or the maximization problem for the 1st term in the r.h.s. taken with the 

opposite sign 
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We want to approximate it with a smooth function, e.g. Gaussian 
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For n=6 there is n(n+3)/2+1=28 fitting parameters – convergence too slow 
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where  is the fraction of particles in the beam core, 

via the minimization problem 



Rigorous Iterative Procedure 
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We can keep  fixed (i.e. set the fraction of particles taken into account) 

Then for - matrix we get 

(Again, mathematics will be presented in a MAP note) 

For  1 some damping is necessary in n=6 case to avoid oscillations:   

By differentiating                       w.r.t. fitting parameters we recover 

equations which can be solved iteratively. 

For average values of coordinates the equations coincide with heuristic 

ones with =1 
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Rigorous Iterative Procedure (cont’d) 

Equations for average values of coordinates remain the same, 

whereas for - matrix we obtain expression with an extra factor of 2 (!) 

compared to the heuristic one 
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Damping is not necessary in this case. 

For n=6 in all cases just  20-30 iterations are required to achieve 

precision 10-6 , it takes Mathematica ~13 seconds with N= 104 on my 

home PC.  For a Fortran or C code it will be a fraction of a second. 

We can try to find the optimal fraction of particles  for the fit. 

From equation                                 we get 0),,(  
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1D Precision Test 
11 

Eigen-Emittances from Tracking – Y.Alexahin,                                                           MAP Meeting 02/08/2013 

N 

Square root of  averaged over 25 

realizations of 1D Gaussian distribution with 

 =1as function of the number of particles N. 

N 

N 

Square root of  averaged over 25 realizations 

of superposition of 1D Gaussian distributions 

with  =1(90%) and  =3(10%)  

r.m.s. 

R.m.s. error in 1/2 from above  R.m.s. error in 1/2 from above  

N 

r.m.s. 

50 100 500 1000 5000 1 104

0.95

1.00

1.05

1.10

1.15

1.20

50 100 500 1000 5000 1 104

0.10

0.50

0.20

0.30

0.15

0.70

50 100 500 1000 5000 1 104

0.96

0.97

0.98

0.99

1.00

1.01

50 100 500 1000 5000 1 104

0.01

0.02

0.05

0.10

0.20

0.50

1/2 1/2 

Conventional  

Conventional  

Conventional  

Nonlinear fit  

Nonlinear fit  

Nonlinear fit  

Nonlinear fit  

Conventional  



1D Precision Test (cont’d) 
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Fraction of beam in the core averaged over 25 

realizations of superposition of 1D Gaussian 

distributions with  =1(90%) and  =3(10%) . 

With N =104  =0.967:  2/3 of the  =3 

component were absorbed by the core and 

only 1/3 rejected. 

Data histogram for one of 

realizations and fitted distribution 

function  
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The Algorithm 
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p =1,2,3 being the plane # (horz, vert, long)  

 Find eigen-emittances = imaginary parts of eigenvalues of matrix 

 Normalize eigenvectors                                   ,  m =1,2,3 being the mode #  

 To relate eigen-modes to the phase space planes compute and compare 

eigen-mode projections 
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 Compute average coordinates       (if needed), the covariance matrix  

and (optionally) the optimal fraction of particles  in the same iterative 

process. 

I would suggest to perform calculations with  =1 and  = optimal 

 Decide if the design trajectory (e.g.           ) should be taken as the 

reference or the average coordinates should be computed along with 

covariance matrix. 
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Application to the Front End 

Red lines show projections of the fitted distribution for  =1. 

– The long tails are obviously rejected even for  =1 
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z – v0t  (cm)  =( -0)/0
20

 

+ longitudinal distributions right after the rotator (some old version by C.Y.): 

 ||N (cm) 1N (cm) 2N (cm) 

1 3.94 1.59 1.42 

opt=0.67 3.20 1.26 1.15 



Application to HFOFO Snake 

6D cooling factor = 16.88  
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||N (cm) 1N (cm) 2N (cm) 

initial 3.94 1.59 1.42 

final 1.36 0.70 0.56 

ratio i/f 2.91 2.27 2.56 

+ normalized emittances for  =1.  



Summary 

 The proposed algorithm is efficient and fast, 

 I am ready to help with its implementation in G4BL and ICOOL. 

 Performance of the HFOFO snake is really better than reported before 

(there was a mistake: z in m instead of cm) 
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