

#### **ECAL Calibration**

#### P.Gauzzi (Universita' La Sapienza e INFN – Roma)

April 5, 2024

# Calibration of the calorimeter in KLOE

- 1. MIPs (cosmic muons) for energy response calibration and relative time offsets calibration of the EMC cells
- 2. Electrons (510 MeV energy) from Bhabha scattering  $(e^+e^- \rightarrow e^+e^-)$  for cross-calibration of the energy response
- 3. Photons of 510 MeV from  $e^+e^- \rightarrow \gamma\gamma$  for absolute energy scale, and for refining the time calibration



# $\begin{array}{c} \textbf{Energy reconstruction} \\ \textbf{Q}_{A}, \textbf{T}_{A} \end{array} \begin{array}{c} (z, t, E) \\ \textbf{Q}_{B}, \textbf{T}_{B} \end{array}$

 $E_i^{(A,B)}[\text{MeV}] = \frac{(Q_i^{(A,B)} - P_i^{(A,B)})[\text{ADC counts}]}{C_i[\text{ADC counts}/\text{MIP}]} K \times f_{MIP2MeV}[\text{MeV}/\text{MIP}]$ 

• Each cell readout at both ends (A, B): Q = collected charge, P = pedestal,  $C_i$  = calibration constant, K = absolute energy scale factor

$$E_{i} = \frac{1}{2} \left( \frac{E_{i}^{(A)}}{w_{A}(z)} + \frac{E_{i}^{(B)}}{w_{B}(z)} \right)$$

Cell energy, corrected for the attenuation along the fibers

 $w(z) = Ae^{-\frac{z}{\lambda_1}} + (1-A)e^{-\frac{z}{\lambda_2}} \qquad (A \approx 35\%, \lambda_1 \approx 50 \text{ cm}, \lambda_2 \approx 4 \text{ m})$ 

• Clustering algorithm to join contiguous cells in position and time,

$$E_{cl} = \sum_{i} E_{i} \qquad t_{cl} = \frac{\sum_{i} t_{i} E_{i}}{\sum_{i} E_{i}} \qquad \vec{r}_{cl} = \frac{\sum_{i} \vec{r}_{i} E_{i}}{\sum_{i} E_{i}}$$



- Calibration constants  $C_i$  determined with cosmic rays, Data-taking without circulating beams: muons = MIPs
- 2.5 kHz of cosmics

⇒ online selection of "golden" MIPs, ~ 100 Hz



 $\mu$  crossing one column (almost orthogonal to the module, within 10°) at the module center (± 20 cm

in the longitudinal coordinate)<sup>200</sup><sub>175</sub>

- 1 day data-taking  $\Rightarrow \sim 10^3$  evts/cell
- $C_i$  = peak of the MIP distribution  $\Rightarrow \sim 1 - 2$  % accuracy
- Repeated every few months
- Used to equalize HVs to have uniform trigger thresholds







- Attenuation curves measured for each calorimeter channel
- Double exponential parametrization



- Light yield at each readout side:
  - $\sim 1$  p.e./MeV deposited energy at the cell center



- Average energy scale:  $f_{MIP2MeV} = 38$  MeV/MIP crossing a cell at the center (measured at test beams)
- Corrections to the  $C_i$  with the Bhabha scattering events  $(e^+e^- \rightarrow e^+e^-)$ : showers of 510 MeV
  - select the peak of the distribution and correct for the ratio Peak/(510 MeV)
  - iterative procedure (3 iterations)
- Repeated every run (every 1 or 2 hours) (~ 100 nb<sup>-1</sup> in KLOE, ~ 1 pb<sup>-1</sup> in KLOE-2)
- 4 5 × 10<sup>4</sup> Bhabha evts in the Barrel O(10<sup>5</sup>) in the Endcaps







- Electrons lose energy in the material before the ECAL⇒ peak for e<sup>±</sup> ~ 503 – 504 MeV
- Absolute energy scale *K* fixed at cluster level with the  $e^+e^- \rightarrow \gamma\gamma$  events
- γ's don't lose energy in the material before the calorimeter ⇒ fix the peak at 510 MeV
- $10^3 10^4 \gamma \gamma$  events in one run









• Typical calibration constant variations (1 barrel channel)



#### **DUNE**

#### **Energy resolution**

- Linearity of the response and energy resolution measured with radiative Bhabha scattering  $(e^+e^- \rightarrow e^+e^-\gamma)$  by detecting the charged tracks in the drift chamber

 $E_+$  and  $E_-$  from  $p_+$  and  $p_-$  measured in the Drift chamber (much better resolution for charged tracks)

• For  $E = 100 \text{ MeV} \Rightarrow \sigma_E = 18 \text{ MeV}$ 





#### **Mass resolution**





#### **Time reconstruction**



 $t_{A,B}[ns] = (T_{A,B} - T^0_{A,B})[\text{TDC counts}] \times c_{A,B}[\text{ns/TDC count}]$ 

 $T_{A,B}$  = arrival time at the PMTs c<sub>A,B</sub> = 53 ps/TDC count (measured in lab. before the installation)

$$t_{A} = t + \frac{z}{v} + t_{A}^{0} + t_{G}^{0}$$
$$t_{B} = t + \frac{L - z}{v} + t_{B}^{0} + t_{G}^{0}$$

t = Time-of-Flight  $t^{\theta}{}_{A,B} = \text{time offsets}$  v = effective light velocity in thescintillating fibers  $t^{\theta}{}_{G} = \text{global time offset to be determined}$ event by event

#### **Z-coordinate reconstruction**



- Calibration with cosmic rays
  ⇒ uniform illumination of the calorimeter
- $\Delta t_0$  is the center of the distribution
- *v* is obtained from the width of the distribution
- 10<sup>6</sup> cosmics, 10 min run (once per day)

 $\Rightarrow$  v = 16.7 cm/ns



#### **Time reconstruction**



- Select high momentum cosmic rays (p > 7 GeV) as almost straight tracks in the drift chamber, illuminating the whole calorimeter
- 5 + 5 time measurements per each track
- Linear fit of t vs R to determine the time offsets t<sub>0</sub>
  Iterative minimization of fit residuals





#### **Time calibration**

#### • After 5 iterations:





•  $t_0$ 's determination at ~ 80 ps



#### **Fine calibration of offsets**

- Done at cluster level with  $e^+e^- \rightarrow \gamma \gamma$  events
- Set t-r/c to zero for all γ clusters
- Iterative procedure ( 3 iter.)
- $t_0$ 's determination at ~ 20 ps







#### **Time resolution**

• Measured with different processes:  $\phi \rightarrow \pi^0 \gamma \ (\pi^0 \rightarrow \gamma \gamma)$ ,  $\phi \rightarrow \eta \gamma \ (\eta \rightarrow \gamma \gamma), \ \phi \rightarrow \pi^+ \pi^- \pi^0, \ e^+ e^- \rightarrow e^+ e^- \gamma$ 

$$\sigma_t = \frac{57 \text{ ps}}{\sqrt{E \text{ [GeV]}}} \oplus 140 \text{ ps}$$

• The constant term has two contribution: a term common to all the cells, due to the spread of the DAΦNE Interaction Point position, and a proper constant term, uncorrelated among cells, due to a residual miscalibration

140 ps = 92 ps  $\oplus$  105 ps





#### **Global** t<sub>0</sub> determination

- The trigger signal is synchronized with a clock from the radiofrequency of DA $\Phi$ NE of 2.7 ns period ( $T_{RF}$ )
- Typical multipeak time distribution of the events

$$t = \frac{1}{2}(t_A + t_B) - \frac{L}{2v} - t_0 - t_G^0$$

- Time needed to a photon from the interaction point to reach the calorimeter: 6 – 9 ns
- Time needed to Kaons (or the decay products) to reach the calorimeter can be as high as 30 40 ns
- How to associate the event to the correct beam crossing ?
  - First, choose (arbitrarily) one of the peaks  $(T_{\gamma\gamma})$
  - For each event assume that the first particle arriving  $T_{\gamma\gamma}$ at the calorimeter is a prompt photon (coming from the Interaction Point), and determine the integer k by imposing:  $t - \frac{R}{c} = 0 \Rightarrow t_G^0 = T_{\gamma\gamma} + kT_{RF}$









#### **ECAL Calibration in SAND**

**MIPs from cosmic rays:** 

- muon flux at surface ~ 0.02  $\mu/(s \text{ cm}^2)$
- with an effective cross-section of the ECAL for vertical muons of ~  $5 \times 10^5$  cm<sup>2</sup>  $\Rightarrow ~ 10^4 \mu$ /s on ECAL ( $\Rightarrow 100$  Hz of "golden mips" in KLOE)
- Underground reduction of a factor of about 100  $\Rightarrow \sim 100 \ \mu/s$  on ECAL (without any selection)
- Rough estimate by rescaling the KLOE numbers
  ⇒ 1 day (24 hrs): ~ 10 evts/cell
- Relaxing the "golden mip" selection: in few days ~  $10^3$  evts/cell

# **ECAL Calibration in SAND**

#### MIPs from beam (rock, magnet and Fe yoke, upstream ECAL modules)

|                  | ECAL   |                   | Rock muons |                   | Magnet events |                   |
|------------------|--------|-------------------|------------|-------------------|---------------|-------------------|
| Cut              | Events | $\varepsilon$ (%) | Events     | $\varepsilon$ (%) | Events        | $\varepsilon$ (%) |
| No cut           | 2.23   | 100.0             | 1447.26    | 100.000           | 50.82         | 100.000           |
| $\mu$ in ECAL FV | 2.23   | 100.0             | 12.73      | 0.880             | 18.92         | 37.229            |
| STT & ECAL hits  | 1.63   | 72.9              | 6.05       | 0.420             | 3.443         | 6.775             |
| NN cut           | 1.56   | 95.5              | 0.10       | 0.007             | 0.07          | 0.136             |

Table 40: Number of events per spill (9.6  $\mu s$ ,  $7.5 \times 10^{13}$  pot) and selection efficiency for the signal from  $\nu_{\mu}$  CC in the front barrel ECAL and the backgrounds from rock muons and magnet events.

(from DUNE-doc-13262, A Near Detector for DUNE)

 $\sim 1.5 \times 10^3 \,\mu/\text{spill}$  (1 spill = 9.6 µs every 1.2 s) without any selection

- Can we use also charged  $\pi$ 's as MIPs ?
- Maybe a MC study could be useful
- Could be useful a calibration with cosmics of all the modules with the final FE electronics before re-assembling the ECAL



#### **Energy scale calibration**

- $\gamma$ 's from  $\pi^0$  decays, invariant mass reconstruction (need a vertex from the STT)
- $\gamma$  + electrons: ~ 30% of photons from  $\pi^0$  convert in the STT
  - $\Rightarrow \sim 50\% \text{ of } \pi^0 \text{ have at least one } \gamma \rightarrow e^+e^-$ (from DUNE-doc-13262, A Near Detector for DUNE)

- High energy electrons from v<sub>e</sub> interactions
  - ⇒ need the momentum measurement in the STT



#### **Energy scale calibration**

- Exploit  $K^0 \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$
- How many expected events ?
  From a naive rescaling of K<sup>0</sup>→π<sup>+</sup>π<sup>-</sup> ⇒ O(10<sup>5</sup>) evts in 5 years of FHC data-taking (from DUNE-doc-13262, A Near Detector for DUNE)
- Reconstruct a vertex with the ECAL only
- Back propagate each of the 4 photons

 $(X_i - x)^2 + (Y_i - y)^2 + (Z_i - z)^2 = c^2 (T_i - t_K)^2$ 

• Times of the ECAL cells must be very well aligned

• Also  $\Lambda \rightarrow n\pi^0$ ? (factor of ~2 more than K<sup>0</sup>, but the neutron could be a complication)





#### **Time Calibration**

• Alignment of the t<sub>0</sub>'s: MIPs from cosmics and other beam particles



- Fine calibration of t<sub>0</sub>'s non-trivial: we need events connecting different parts of the ECAL
- Maybe events with  $\pi^0$  decaying into  $\gamma$  (and  $e^{\pm}$ ) could be used, with the information of the vertex in the STT



#### Conclusions

For energy and time calibration we need:

- MIPs (from cosmics and from beam)
- $\pi^0$  reconstruction (from  $\gamma$  and  $e^{\pm}$ ),  $K^0 \rightarrow \pi^0 \pi^0$
- electrons from v interactions

MC studies needed for all these points