Trigger infrastructure
restructuring — episode 3

G. Lehmann Miotto, A. Sztuc




Recap from episode 1 & 2

 Last year we carried out a first restructuring of
the trigger chain by grouping an reordering all the
TPs from one detector unit (e.g. 1 APA), and to
buffer TPs systematically in the readout

* Episode 1: only 1 stream per TA maker

* We realised that the trigger configuration was very
monolithic and several code blocks were sub-
optimal.

* Alejandro improved the loading of algorithms, which
allowed to eliminate a lot of code duplication

* Episode 2: we transformed the trigger modules to
use the same design pattern as the readout
modules, with shared code for buffering and
processing (fddag-v5.0.0)

x # links

Possible to have one TP
module per link, or one per
readout application.

In the latter case we already
provide reordered TPs for a
complete APA/CRP.

TriggerPrimitives

SWWIBTriggerPrimitiveProcessor

1 per readout application

nnnnnnnnnnnn




Episode 3- the MLT

 The MLT is not well separated from the other parts of the trigger
chain
* Processing of TCs (flitering, merging, ...)
* Forming of Trigger Decisions and their time/geographical windows
* Interaction with the DFO and run control to hold/release triggering
* Livetime accounting

* Mixed with it are

* The generation of local TCs
* The buffering of TCs



Episode 3 —the MLT

* For some aspects the MLT
application can be similar

to the other trigger
applications

* We

propose to make a

first split like this

Receive and buffer TCs
(and respond to data
requests)

Generate TCs locally (e.g.
random or custom
generator)

Form TDs according to
merging, grouping and
bitmasks settings

Account for dead-time
and send TDs only when
they should be sent
(running, not paused,
DFO not inhibited, . )

WIB r: w data

WIBEthFrameProcessor

xN with N in {40,48)

TPCTPProcessor

nnnnn

TriggerApplication

'\

i \
U
®

vvvvvvvvvvv

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

TCWrapper>

DataSubscriber<TriggerCandidate,




s this the end of refactoring?

* From a trigger software infrastructure point of view we think that
now blocks are sufficiently modular with clear scope

* There are aspects getting closer to the trigger function proper that we
should start thinking about, e.g.:

* How can livetime accounting be done correctly?

* Who should decide which parts of the detector and for which time intervals
should be part of the Trigger Record?

* This is now all done in the MLT, but to me this should be part of the TAs/TCs; the MLT
may have rules for forcing enlarged windows, but it is the TCs that know what they
triggered on



Let’s discuss



