
Ethernet readout optimization

Roland Sipos - for the DUNE DAQ
CERN

DUNE DAQ CoreSW Meeting
3rd April 2024

2

Data movement - original

x40-48

3

● Readoutlibs’ DataMoveCallbackRegistry for intra-process readout modules
○ Similar API and structure as IOManager, but holds std::functions with

specific signature

● DataLinkHandler modules advertise/register a callback function, that moves the
data to the preprocessing pipeline, and then writing to the LatencyBuffer.
○ Registry:
○ ReadoutModel:

● I/O card receiver modules (NICReceiver) could look-up which callback functions
to invoke to move the data from the producer thread’s context directly to the
DLHs’:

Callback feature in 4.4.0

4

Data movement - Callbacks

Invoke “consume” callback

x40-48

5

● Optional path, inferred from connection name to be enabled
○ Necessary, as we don’t want to break other datatypes (trigger, TPs, etc.)
○ Ugly, “hacky”, I know: If the raw_input connection has a “cb_” prefix

● Would it result with any perf. gain for TPs to TPDataLinkHandlers!?
○ Maybe, but probably callbacks’ invocation needs parallel async techniques

either on the producer or consume callback owner class. (Tricky, not SPSC.)

● Forward port to “develop”?
○ Feedback for appfwk review first? Or that’s too far ahead, seeing the gain?
○ Improvements and common API/utility promotion are possible for sure…

■ Generalize for network: RPC variant?
■ GenericCallback instead of move signature only functions?

Callback feature comments

https://github.com/roland-sipos/rubberdaq/blob/main/include/rubberdaq/GenericCallback.hpp

6

● Removes one full copy (intermediate buffering) of the raw data stream:
○ Eliminates consumer threads: no resource utilization due to polling
○ Eliminates context switching between prod/consumers
○ LLC and first level cache miss reduction due to first two points

● Memory bandwidth utilization percentage difference: ~37% less!
○ Can be utilized as natural headroom for SNB recording!

● CPU utilization reduction: 12 vCores (Phys & their HT) x ~60%
○ This one is on Intel Xeon Gold 5118 @ 2.3 GHz (Skylake)
○ Heavily depends on CPU!
○ But even on newer generations we see ~10 vCores x ~35% reduction

(CPUs with more cores and higher clocks)

Resource utilization reduction

7

● Non negligible on CPUs with lower core counts and clocks!
● On Intel Xeon Gold 5118 @ 2.3 GHz (Skylake) -> before/after callbacks

CPU utilization

8

When the processing (copying out data from
the DMA buffers) is lagging. Data is missed!

● Queues: Order of thousands missed
packets in every few seconds

● Callbacks: Occasional spikes to a few
hundred in every few minutes

Where are these coming from?
We knew, that we are sensitive to interrupts,
but callbacks only won’t help with that, as this
comes from the producer thread (in DPDK).

Something is still wrong…

Missed packets
Queues

Callbacks

Queues

9

● Alessandro did extensive testing on the AMD server to tweak interface and DMA
memory pool configurations in DPDK

● Main find: The interface polling function (“rx burst”) returns with full size very
frequently. Our DPDK/iface configuration needs a revisit.

Alessandro’s evaluation and testing
Queues

10

● Burst size: maximum number of packets/descriptors to poll.
This allows a run-to-completion processing stack to statically fix or to
dynamically adapt its overall behavior through different global loop policies.

○ Previous value: 256
● Lcore_sleep_us: Microseconds to sleep if there are no full buffers in the burst.
● Mbuf_cache_size: Complicated, we didn’t understand this properly…

For details have a look on the mempool API docs
○ Previous value: 256

● Num_mbufs: The number of mbufs (DPDK DMA buffer segments) to allocate.
○ Previous value: 8191

● RX/TX ring size: Number of RX/TX descriptors.
○ That is the mechanism you communicate to the NIC hardware - e.g., in the

case of RX, for passing pointers to empty buffers that you pass to NIC and
getting pointers for filled buffers that NIC returns.

○ Usually this parameter has hardware limits (max. num. of descriptors).
○ Previous value: 1024

DPDK/iface config revisit
Queues

New “golden” config

https://doc.dpdk.org/api/rte__mempool_8h.html#a503f2f889043a48ca9995878846db2fd

11

● Strategy for our traffic characteristics is to poll (sensitive to interrupts) as many packets as
we can in one go (burst). Basically to reduce the impact of interrupts and kernel events.

○ Increase num. descriptors
○ Allocate more mbufs
○ Increase burst size

Take note of the removed linear
roof: Reduced full bursts

Iface config tuning
Queues

Before

After

12

New performance
Should be 0

Should be 0

13

Outlook
● There are still some very rare occurrences of missed packets on 021.

(That machine has some kernel parameters under testing, might be related!)

● Kernel isolation should still be pursued, as my suspicion is that will still help the
AMD due to the higher I/O die latency on the processor

● This optimization builds up confidence in moving on to scalability aspects
○ 2 NICs in the same server

● Also, SNB recording evaluation and improvements can continue

● Topology evaluation opens up again
○ Symmetric or asymmetric configuration of I/O devices and processing threads

14

Summary

● Ethernet readout with TPG, resource headroom available (but no SNB recording)
on a dual-socket server with CPUs that are from Q3 of 2017 (mid-range Skylake)

● Great work and sprint from the perf-testing activity team for fddaq-4.4.0!
○ Building up experience and confidence in understanding system

characteristics and requirements

● The path ahead is clear what we aim to test in our upcoming sprint
○ Many other things to test and sort out, but we managed to breach through a

showstopper problem

● Questions and comments are welcome!

