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Background

* The Deep Underground Neutrino Experiment (DUNE)

* In the framework of three-active-neutrino mixing, the charge parity phase,
the neutrino mass ordering, and the octant of 6,5 remain unknown

* DUNE is a next-generation long-baseline neutrino oscillation
experiment

* Aims to address above questions by measuring the oscillation patterns of
v,/V. and v /v, over a range of energies spanning the first and second
oscillation maxima
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DUNE Far Detector (FD): LArTPC

* High resolution 3D track reconstruction
* Charged particle tracks ionize argon atoms

* lonized electrons drift to anode wires (“ms)
for YZ-coordinate

* Electron drift time projected for X-
coordinate

* Argon scintillation light (~ns) detected
by photon detectors, providing t,

* Output: a 2-D pixelmap image for each
readout plane
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DUNE FD: Horizontal Drift (HD) LArTPC

\/
* Four 17-kt modules deployed in stages o K
* 1st module will be horizontal-drift:
* 18m x 19m x 66m lj
* 3 readout planes, two introduction and one

collection
 Drift distance: 3.6 m, wire pitch: 5 mm
e 4 drift volumes
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DUNE FD: Vertical Drift (VD) LArTPC

e 2"d DUNE FD module has a vertical drift (VD) path in contrast to HD
e 2 drift volumes, cathode plane in the middle

* Anode: a stack of perforated PCBs with 3 layers of readout etched electrode strips in different
orientations

* Modular design allows easy assembly and production. Wires = Strips improves
mechanical robustness
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Motivations - Al Based Event Reconstruction Chain

* Traditionally, the reconstruction of neutrino events is expensive or inaccurate

* Energies of electrons and hadrons are calculated from calorimetric energies and calibration
factors

* Directions of particles are reconstructed by fitting to detector hits

» A full Al based event reconstruction chain
* The deep-learning based particle type, particle energy, vertices and momentum (energy +
direction) reconstruction

* DUNE's pixel map readout is ideal for image processing neural networks to
reconstruct neutrino events




Convolutional Neural Networks (CNNs) for
Event Identification and Energy Reconstruction

* CNNs are deep neural networks taking raw pixel values as the input and applying
convolutional filters across the pixelmaps/images

* Uses the 3 x 2D readout images, one for each wire/strip-plane, directly as input to a ResNet
architecture

* CNNs then merge information across the 3 planes and use fully connected layers
at the end for neutrino flavor classification or energy regression

DUNE Work in Progress ’ - .




UCI
Event Classification CNN identifiers in DUNE FD HD

* Convolutional Neural Network (CNN)-based classifier (“CVN”) to tag neutrino
flavor, main PID for HD Technical Design Report (TDR) analysis and basis for
sensitivity projections [Phys. Rev. D 102, 092003, 2020]

* Identify v, CC, v, CCand NC events
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UCI
Event Classification CNN identifiers in DUNE FD VD

* Training on a fraction of planned simulated samples shows very similar performance as for HD
* Efficiency to tag CC ~90% near peak DUNE flux (~2.5-3 GeV) with overall purity ~80%

* Used as input for new VD-based sensitivity studies (technical design report analysis), similar
results as HD
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v, CCand v, CC Event Energy in DUNE FD HD

* Regression CNN for event energy, optimizing resolution (E,..;—Eirue)/Etrue

* Reweighted events to reduce energy dependent bias in training

* Better resolutions than lepton+hadronic energy method, less energy dependent
bias with energy-reweighted training

4000

3000

Events

2000

1000

DUNE Simulation
T T T ]

v, CC

Res=7.4%
Res=17.7%

T T T T T T
—— CNN Energy -
Leptonic + Hadronic Energy ]

(RecoE-TrueE) /TrueE

Mean ((RecoE - TrueE) / TrueE)

0.20
0.15
0.10

0.05

0.00F

—0.05
—0.10

—0.15

—0.20"

arXiv:2012.06181

DUNE Simulation

ErT T T T T [ T T T e T T T T T T e T T EREEE R TTTT T T TTTT 7

F @® CNN Energy 3

? 5 cc A Leptonic + Hadronic Energy ;

= % £
£ o e ] e

......... Lo b b b b4

1 2 3 4 6

True Energy (GeV)

12



v, CCand v, CC Event Energy in DUNE FD HD

* Regression CNN for event energy, optimizing resolution (E,..;—Eirue)/Etrue
* Reweighted events to reduce energy dependent bias in training

* Better resolutions than lepton+hadronic energy method, less energy dependent
bias with energy-reweighted training
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Final-state Particle Energy Reconstruction

* Regression CNNs for final state particle energies

* Trained on clustered lepton shower/track pixelmaps produced by
Pandora
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3D Particle Direction Reconstruction

* Direction regression heavily dependent on 3D geometry

* Designed 3D CNNs to reconstruct particle directions
* Input 3D image constructed from the 3x2D detector images
* Train direction CNNs on full-event or clustered lepton shower/track pixelmaps

arXiv:2012.06181
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3D Particle Direction Reconstruction

* 3D CNNs beat traditional fit-to-hits method (PCA) with better electron and muon
resolutions in all energy regions

* 3D CNN trained with full-event pixelmaps shows comparable performance to that

trained with clustered lepton shower/track pixelmaps = extract particle

kinematics without clustering/tracking
arXiv:2012.06181
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3D Particle Direction Reconstruction

* 3D CNNs beat traditional fit-to-hits method (PCA) with better electron and muon
resolutions in all energy regions

* 3D CNN trained with full-event pixelmaps shows comparable performance to that

trained with clustered lepton shower/track pixelmaps = extract particle

kinematics without clustering/tracking
arXiv:2012.06181
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Neural Network Robustness Tests
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Graph Neural Networks (GNN)

* Define input data as a graph represented by nodes and edges
* Nodes are generalised as quantised objects with arbitrary set of features
* Edges describe the relationships between nodes

* Perform convolutions on nodes and edges rather than the entire pixelmap in CNN
— speed up the training

* Output is user-defined: classification and regression

&y & &
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GNN for Object Reconstruction in LArTPC
(ExtExa.TrkX project)

e Successfully reconstruct LArTPC showers/tracks with GNN in
ExtExa.TrkX project (a collaboration developing GNN reconstruction
for HEP)

* Implementing under DUNE context
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Figure 2. Example graph of a v, interaction (left: ground truth, right: model output). Shower-like edges
are drawn in red, hadronic edges are drawn in blue, muonic edges are drawn in green and false edges
are drawn in grey.

Jeremy Hewes, Adam Aurisano etc, EPJ Web of

Conferences 251, 03054 (2021)
20

Figure 4. Confusion matrix showing the overlap of true and reconstructed edge labels.
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ProtoDUNE HD (SP) and VD at EHN1 (CERN)

-

T J.

NP04 |
ProtoDUNE-SP

-

* ProtoDUNE-HD (SP in Phase |I) and VD are two : o

large DUNE prototype detectors at CERN o
Neutrino Platform EHN1 ' e

e 770 tons LAr mass each U >

: = S
e 4 AW\
e Expose to test beams, momentum-dependent H ‘ :
beam composition contains e, K*, u, p, * T * g ’
A Y
I

e Also take cosmic ray data

* Phase | completed, preparing for Phase I
running of ProtoDUNE HD and VD o Y

¢ H4-VLE beam line [Phys. Rev. Accel. Beams 22, 061003 (2019)] y : "&',‘

* New tertiary, low-mom beam line; 2 secondary targets :

* W for lower momenta (0-3 GeV/c); Cu for higher momenta (4-7
GeV/c)

* TOF and Cherenkov counters for PID S —
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CNN for Shower/Track Separation in ProtoDUNE

* Use CNN to classify energy deposits (hits) from Shower, Track and Michel electrons
* Showers: Energy deposit pattern caused by electron, gamma, etc
* Tracks: Energy deposit pattern caused by muon, pion, etc
* Michel electrons: Low energy electron from muon decays

e Can be used in clustering, PID, etc

ProtoDUNE-SP Event with Example CNN Input Patches

ProtoDUNE-SP DATA

Wire

22
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Shower/Track CNN architecture

* The inputs are 48-pixel images centered on the reconstructed hit e beoxteds
object to be classified

* Asingle convolutional layer is used to extract feature maps from
the images

* These are processed by two dense (fully connected) layers
before being split into two branches which classify the images m

92928x128

e QOutput is the type of hit: from shower? Track? Michel electron?
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Performance of CNN in ProtoDUNE Data

» Test shower classifier scores for different particle species in the ProtoDUNE-SP

* Reasonable DATA/MC agreement
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Summary

* Systematically developed event ID, particle ID, event energy, particle
energy, particle direction reconstruction and shower/track clustering
with deep-learning methods for DUNE far detectors

* Achieved very good selection efficiency and resolution

* Developed Graph Neural Networks and sparse neural networks to
reduce computational burden

* Performed robustness tests with ProtoDUNE data and alterative
simulation models
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Future Directions

* Fast Simulation — Deep Generative Models (DGMs)

* Generation of simulated detector response is crucial to data analysis in
neutrino physics but computationally very expensive

* DGMs are a promising approach to learning such a response function

* DGMs developed for particle physics calorimeters

e Generative Adversarial Networks (GAN), Variational Auto-Encoders (VAE),
Normalizing Flows (NF), etc.

* DGMs are also promising for fast simulation in neutrino physics
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Thank you!

Junze Liu

junzell@uci.edu

UCI DCUMVE e 3¢ Fermilab



