

Atmospheric neutrinos containment study in DUNE FD-HD

Camille Sironneau

Sim/Reco meeting 22/04/24

Simulated sample

- Geometry : HD only, 1x2x6 APA (1/8th of total expected volume)
- 300k events
- Uniform distribution of vertices in fiducial volume
- Uniform distribution of neutrino direction
- Neutrino energy flux in $\sim E^{-2.5} \rightarrow$ event rate in $\sim E^{-1.5}$
- All flavours, CC/NC, normalisation of rates depending on relative cross sections
- Energy between ~100 MeV and ~ 100 GeV

Bounds: x [-363cm; 363cm] → drift axis y [-608cm; 608cm] → height z [0cm; 1394cm] → beam axis

Camille Sironneau

Setup of the study

- Looked at **primary muon** tracks going out of simulated volume bounds
 - \rightarrow energy not seen by the detector and thus not accounted for in reconstruction
- Used **true information** from Geant4
- For 'reference'/sanity check, compared w/ the behaviour of crossing tracks
 - \circ ie, tracks crossing the anode \rightarrow going through the 2 drift volumes

Sanity check: angular distribution of nu and mu

- No particular behaviour for zenith angle (vertical angle) \rightarrow reassuring
- Same distribution for neutrinos and muons → as expected
- Azimuthal angle (angle with x axis in xz plane) shows dips ~-90° and 90°
 → tracks going along z axis, which is the longest side

Camille Sironneau

Main finding

All muons with energy > ~4 GeV seem to escape the detector volume

Camille Sironneau

Start - End points of all muon tracks going out

- Plot number of tracks going out of the simulated volume
- More tracks escape near the edges of the volume → logical
- small peak for tracks starting
 around and crossing the anode
 → also logical

Camille Sironneau

Primary vertex position for tracks not contained

- Doesn't seem a big dependance on vtx
 position except for vertices near the edges
 → makes sense
- Uniform behaviour for crossing tracks

Camille Sironneau

E-threshold where 80% of muons are not contained

- Mostly around a few GeV as expected but sometimes even lower than 1 GeV
- Threshold seems to be lower when tracks follow the x axis (azimuthal angle ~0° or 180°) → logical, smallest dimension
- Threshold seems lower for vertical tracks
 → logical as well

Camille Sironneau

Extrapolation to full det volume

- Used Geant momentum to estimate muon range
- Compared computed end-point to full detector limits for each of the 8 "simulated" volumes
 - \rightarrow sort of duplicate the simulation
- Get new estimation of containment
- Threshold for fully not contained
 - ~9GeV so twice better than before

Camille Sironneau

Upgoing atmospherics

- Select muons with zenith angle cos
 between -1 and -0.75 to study behavior of upgoing neutrinos only
- Curves present roughly the same behavior → height doesn't change between sim and full volume
- All muon tracks go out when E > 4GeV

Camille Sironneau

Summary and conclusions

 Containment study with 1x2x6 geometry simulation shows that primary muons produced in atmospheric neutrino interactions completely escape the detector when have energy >4 GeV

→ need to work on **Multiple Coulomb Scattering** to get best energy reco possible

• When **extrapolate to full detector volume**, see ~ the same E-escape threshold for upgoing

neutrinos, which are the ones we are most interested in

 \rightarrow might need more statistics (notably for angle studies) but simulation or not of full

volume doesn't seem to impact physics studies

Thanks a lot for your attention !

Camille Sironneau

MCS Energy estimation

Energy reconstruction - Current state

• Currently, energy reconstruction done using three different methods:

Method 1 (v_{μ}): Energy of longest track + Hadronic energy

Method 2 (v_{e}) :

Energy of shower with the most charge deposited + Hadronic energy

Method 3:

In case everything else fails, add all deposited charges

slides from one of Henrique Souza's presentations

(Method 1 and 2 are always computed, the decision is given later with CVN score)

NOTE:

- Hadronic energy is computed by adding the total deposited charge (corrected by lifetime), but removing the hits associated with the lepton (longest track or most charged shower)
- Method 2 and Method 3 are equivalent, with the difference of adding the electron mass.

Camille Sironneau

MCS Energy estimation

Camille Sironneau

MCS Energy estimation

slides from one of Henrique Souza's presentations

Camille Sironneau

Muon range computation

Camille Sironneau

Muon range computation

Camille Sironneau

Containment study

Camille Sironneau