Scintillation Light Simulation Updates

Dom Brailsford, Clara Cuesta, <u>Laura Paulucci</u>, Dan Pershey, José Soto PDS Consortium Meeting April 09 2024

Overview

- Our last general update was at the September CM
 - We had interesting developments to report, mainly
 - VD TDR completed and approved by LBNC
 - New FD production
 - Physics analysis with the PDS moving forward
 - Progress on ProtoDUNE (HD, VD also coldbox, SP)
 - Since then, further developments were performed
 - More progress on ProtoDUNE
 - LE light trigger studies in FD
 - Light propagation models
 - FD3 studies

•

FD1-HD new MC production

- The last MC production for FD1 was MCC11 (2018): TDR-era
- Some areas of the current DUNE FD workflow still rely on ancient services/tunings/configurations from the MCC11 era → This has been updated
- We do not currently have an apples-to-apples comparison of HD and VD performance (comparing MCC11 HD to modern era VD)
- LBNF production

•

- Nearly finished. Will have ready-to-use light info in FD-HD
- Will run future smaller FD-VD larger geo production for calorimetry studies
- MARLEY interactions in both VD and HD
 - Ticket to be submitted (hopefully) this month

ProtoDUNE-HD

- The machinery for the performance studies is being developed:
 - Example scripts to analyze raw data and to dump the raw data to root files have been prepared.
 - Raw-to-LArSoft converter is ready.
 - IV-curves codes.
 - Identifying key studies and people interested in performing them → <u>spreadsheet</u>
- Current simulation is based on photon libraries, since the semi-analytical model is not ready yet for the last updated geometry.
- Last MC production sample includes the PDS data.

Task ite	em
Single F	PE characterization
Gain vs	voltage, SNR, calibration
Cross-ta	alk & afterpulses
Stability	/ overtime
Dark co	unt rate
Time re	solution
Arapuca Compa	a detection efficiency rison of components' performance
Arapuca Compai PDS LY	a detection efficiency rison of components' performance ' calibration
Arapuca Compar PDS LY Michel (a detection efficiency rison of components' performance ' calibration electrons
Arapuca Compar PDS LY Michel (Q+L cal	a detection efficiency rison of components' performance ' calibration electrons lorimetry
Arapuca Compar PDS LY Michel (Q+L cal L Calori	a detection efficiency rison of components' performance ' calibration electrons lorimetry imetry with the beam

ProtoDUNE-VD

- The simulation using the computable graph of Ar light is ready, and Xe will arrive soon (Shuaixiang, who is also preparing for Rayleigh scattering measurements [1]).
- Ar+Xe is available using photon libraries.
- The workflow to include the PMT response is not ready yet (Xuyang Ning, from BNL is working on this).
- Next MC production sample (on going) will include PDS data including Ar and Xe light using photon libraries, and Ar light only using the computable graph.

VD ColdBox light simulation updates

- Simulation is focussed on studying neutron capture in argon (from pulsed neutron source). However, the framework can be extended to simulate other activities (such as cosmic muons) as well.
 - Currently 4 cathode X-ARAPUCAs simulated. Work is ongoing to simulate 2 membrane X-ARAPUCAs.
 - Full photon simulation in LArSoft carried out to study photon production and detection during neutron capture events.
 - Simulation is in developmental phase, and more simulation studies are planned to be done as we collect the data from PNS run in the ongoing coldbox.

Fig: DUNE VD coldbox (top view)

Slide from Ajib Paudel

•

•

•

LE events light studies

Pablo Barham has been working on trigger with the PDS in VD [1] and new background model validation [2]

600

400

200

0

-200

-400

-600

	10 kpc	15 kpc	20 kpc	95% thresh	
Livermore	1	0.997	0.791	18.61 kpc	
Garching	0.969	0.212	0.014	10.63 kpc	
GKVM	1	1	1	36.34 kpc	

Trigger efficiencies (computational graph 12 kt)

Ar39	Total (Hz/ARAPUCA)	Total (Hz/cm2)		
HD	600	1.193		
VD	4000	1.093		

- Sergio Manthey is working on solar neutrinos in HD [<u>1</u>]
- Results indicate a more challenging scenario with the updated background model

AdjOpFlashPur

5-30 MeV neutrinos

Light propagation models

- Marc Patterno [<u>1</u>] [<u>2</u>]
 - Optimizing the PDFastPAR module
 - Increase speed by changing specific calculation functions and decrease memory by changing data products
 - Goal: parallelization of the processing
- Marcio Adames [1]
 - Proposal of a new 100% analytical model for light propagation in Lar
 - Still at early stage

FD3 - APEX

- Franciole Marinho: Standalone Geant4 simulation → LY map and first performance estimators [1]
- Eric Church: Backgrounds and impact on LE physics [1]
- Chao Zhang, Xuyang Ning: Neutrino E reconstruction (charge+light) [<u>1</u>]

Moving forward

- Our next big challenge is moving to the 10kton detector
- Single muons, G4 stage

TimeTracker printout (sec)	Min	Avg	Max	Median	RMS	nEvts			
Full event	103.496	115.616	136.319	114.455	9.1209	10			
source:RootInput(read)	0.000425749	0.000550976	0.00066299	0.000561156	7.50674e-05	10			
simulate:rns:RandomNumberSaver	7.9944e-05	0.00013105	0.000248878	0.000115492	4.76166e-05	10			
simulate:largeant:larg4Main	0.149618	0.161804	0.190967	0.15406	0.0142845	10			
simulate:IonAndScint:IonAndScint	0.0184137	0.0214621	0.0294655	0.0203172	0.00315511	10			
simulate:elecDrift:SimDriftElectrons	0.0954569	0.105173	0.128246	0.101722	0.00998182	10			
simulate:PDFastSim:PDFastSimPAR	102.807	114.835	135.442	113.674	9.05806	10			
[art]:TriggerResults:TriggerResultInserter	1.7786e-05	3.48886e-05	6.6846e-05	3.1768e-05	1.70212e-05	10			
end path:out1:RootOutput	3.859e-06	2.36379e-05	5.4575e-05	1.8838e-05	1.47984e-05	10			
end_path:out1:RootOutput(write)	0.424044	0.49047	0.59212	0.478889	0.0499981	10			

• The PDFastSim is quite slow compared to the rest

Summary

- We keep progressing with the light simulation and reconstruction
 - Advances with FDs and ProtoDUNEs
- We have still a lot to do
 - Optimizing our reconstruction methods to handle xenon and specially backgrounds for LE events
 - Keep pushing physics analysis to include light not only for t0
 - Analyzing ProtoDUNE-HD data will be top priority in the near future
 - Prepare for ProtoDUNE-VD is also key
 - Does the PDS Consortium have any particular request for beam?

How to get involved

- There has been a lot of progress but there is still a lot to do!
- If you want to develop any PDS simulation related task, please
- 1. Get in touch with the conveners (e-mail, Slack)
- 2. Attend the PDS simulation related working group meetings

 FD Sim/Reco meetings: <u>Indico page</u>, mailing list: dune-reco@fnal.gov

Mondays at 9:30am FNAL time, biweekly

 PDS ProtoDUNE meetings: biwe <u>Indico page</u>, mailing list: <u>dune-proto-sp-dra@fnal.gov</u>

 LE meetings: <u>Indico page</u>, mailing list: <u>dune-physics-snb@fnal.gov</u> 10a

Wednesdays at 10am FNAL time, biweekly

BACKUP

FD1-HD new MC production

- A non-exhaustive list of improvements relevant to the PDS are:
- New background model: Decay-0
- New optical fast simulation mode: now using the semi-analytical model instead of a photon library for the active volume
 - Significantly lower memory use, good resolution and bias
 - not possible to get the light generated behind PDs \rightarrow need to implement hybrid model?
- Updated Rayleigh scattering value (from 60cm to 99cm @ 128nm)
- New scintillation light generator model: LArQL
 - # of scintillation photons correlated to the # of ionization electrons (depends on the Edeposited instead of a fixed LY)
 - . Increased LY where the Efield is lower

FD1-HD new MC production

- A non-exhaustive list of improvements relevant to the PDS are:
- May be moving to testbench PE and deconvolution algorithm for OpHits
- Geometry for HD used in the simulation
 - HD TDR still had the WLS bars.
 Now with X-Arapucas
 - Smaller geometry: 1x2x6
 - Need to expand the argon volume if we want to consider the impact of external backgrounds
 - Notice we are not simulating the <u>APAs which are closer to the</u> <u>cryostat wall</u>

