

JUNO: State Construction of the sector of th

*on behalf of the JUNO Collaboration

Fermilab Neutrino Seminar, April 11th 2023

Outline

- Physics Motivation
- JUNO Basics
- Physics Goals
- Design & Status
- Summary & Conclusions

Physics Motivation Status of the field

Neutrinos Matter!

- We need to understand neutrinos if we want to understand our universe!
- They are invaluable astronomical (and terrestrial)
 messengers

They are the second most **abundant** particle in the universe

4

Their behavior is beyond the Standard Model

Neutrinos Oscillate!

• The observation that neutrinos oscillate implies that they are massive:

(where $\Delta m_{ij}^2 \equiv m_i^2 - m_i^2$ are the so-called "mass splittings")

How they interact-

Illustration of neutrino oscillation:

How they propagate (ν_1, ν_2, ν_3)

where the matrix *U* is parameterized in terms of three mixing angles (θ₁₂,θ₁₃,θ₂₃) and one CP-violating phase δ

For example, as a <u>rough</u> approximation at short baselines, the $\bar{\nu}_e$ "survival" probability is: $P(\bar{\nu}_e \rightarrow \bar{\nu}_e) \cong 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{32}^2 L}{\Delta r}$

amplitude

frequency

Completing the Picture

6

• Great progress has been achieved in the last two decades:

JUNO The Basics

7

Reactor Antineutrinos

• Nuclear reactors are a flavor-pure, widely available, cost-effective, **extremely intense** and well-understood source of electron antineutrinos:

- A 1 GW_{th} core produces in one minute more neutrinos than the NuMI and BNB beams produce in a typical year

JUNO at a Glance

The Jiangmen Underground Neutrino Observatory (JUNO) is a large multipurpose experiment under construction in China:

- 53 km from two major nuclear power plants (8 reactors)
- 35 m diameter sphere with 20 ktons of liquid scintillator (LS) surrounded by water Cherenkov detector
- Unprecedented energy resolution of 3% at 1 MeV

Oscillation Probability

• Electron antineutrino survival probability:

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L,E) = 1 - \frac{\sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \frac{\Delta m_{21}^2 L}{4E}}{4E} - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E}\right)$$

- Access to $\theta_{12}, \theta_{13}, \Delta m_{21}^2,$ Δm_{32}^2 and Δm_{31}^2
- First experiment to observe so-called "solar" and "atmospheric" oscillations simultaneously
- Independent of θ_{23} and δ_{CP}

Antineutrino Detection

• The primary detection channel is the Inverse Beta Decay (IBD) reaction:

- Coincidence between prompt positron and delayed neutron signals allows for **powerful background rejection**
- Energy of positron preserves information about energy of incoming $\bar{\nu}_e$:

$$E_{\bar{\nu}_e} \approx E_{\text{prompt}} + 0.78 \text{ MeV}$$

Prospects Physics Capabilities

A Multi-Purpose Neutrino Observatory

Oscillation Physics with Reactor $\bar{\nu}_e$'s

- The oscillated spectrum contains a wealth of information
- Can determine the neutrino mass ordering (NMO)
 - Exploit interference effects in the fine structure of the oscillated spectrum
 - 3σ sensitivity within ~6 years
 - Reassessment with full simulation and updated inputs about to be released
 - Independent of θ_{23} and δ_{CP}
 - Complementary information to that of other experiments
 - Can achieve ~5σ in combination with other experiments (e.g. <u>PRD 101, 032006 (2019)</u>, <u>Sci Rep 12, 5393 (2022)</u>)

Fitting with the wrong ordering yields the wrong Δm_{31}^2 value. Therefore, external constraints can help!

California, Irvine

14

Oscillation, Physics with Reactor $\bar{\nu}_{\rho}$'s

JUNO will also measure $\sin^2 \theta_{12}$, Δm_{21}^2 and Δm_{31}^2 to better than 0.5% in 6 years •

Important input for the neutrino community:

- New era of precision for neutrino mass & mixing models
- Model independent tests of the threeneutrino oscillation framework (UPMNS unitarity tests)
- Narrow down parameter space for $0\nu\beta\beta$ searches

Parameter	$\sin^2 \theta_{12}$	Δm_{21}^2	Δm_{32}^2	$\sin^2 \theta_{13}$
Current Precision*	4.2%	2.4%	1.5%	3.2%
JUNO 6 years	0.5%	0.3%	0.2%	12.1%
* from PDG 2020	•	•	•	•

Roughly one order of magnitude improvement over existing precision for 3 parameters!

Sub-percent precision in $\sin^2 2\theta_{12}$ and Δm_{21}^2 already within ~1 year of data-taking

Supernova (SN) Neutrinos

- Able to determine flavor content, energy spectrum and time evolution of supernova (SN) burst neutrinos
 - 10⁴ detected events (5000 IBDs) for SN @ 10 kpc
 - 3 detection channels sensitive to all flavors, low threshold ~0.2 MeV
 - Sensitivity to pre-SN neutrinos up to ~1.6 (0.9) kpc for normal (inverted) ordering
- Also sensitive to diffuse SN neutrino background (DSNB)
 - Expected detection significance of 3σ after ~3 years of data for nominal model
 - Provide leading constraint if DSNB is not observed

Solar Neutrinos

- Solar neutrinos in JUNO:
 - Unique assets:
 - Large size, low threshold, and high _ resolution
 - Main challenge: radiogenic and cosmogenic backgrounds
 - Will collect large sample of ⁸B neutrinos
 - Flux measurement in CC, NC and ES channels with 5% precision (3% with SNO) in 10 years
 - Day night asymmetry (2-3 σ in 10 years) -

10

0

2

8

6

10

Time [y]

- Measure osc. parameters with solar and reactor neutrinos in the same detector
- Good sensitivity to solar neutrinos below 1.5 MeV (⁷Be, pep and CNO)
 - Reach depends strongly on scintillator radiopurity

- min. requirement for NMO
- 10 x Borexino Phase-I
- Borexino Phase-I
- Borexino Phase-III (U/Th 10⁻¹⁷ g/g)

(dashed horizontal lines are the Borexino results)

17

<u>CPC 45, 023004 (2021)</u> and <u>arXiv:2303.03910</u> (accepted by JCAP)

Atmospheric Neutrinos

- Some oscillation information:
 - Independent measurement of NMO via matter effect
 - Complementary information to that from reactor antineutrinos
 - $\sim 1\sigma$ sensitivity in 6 years
 - Significant progress on reconstruction and selection
 - Reevaluation of sensitivity in progress
- Have good ability to reconstruct atmospheric neutrino spectrum
 - Very good performance in "low energy" region (100 MeV - 10 GeV)
 - Provide important constraints to models

Jniversity of

California, Irvine

Geoneutrinos and Nucleon Decay

 Competitive sensitivity to nucleon decay, particularly in modes where LS enables triple coincidence <u>CPC 47, 113002 (2023)</u>
 C. Jiang's talk at TAU

Design & Status Overview of the Project

Detector Concept

- Keys to fulfilling the physics goals:
 - Optimal baseline
 - High statistics
 - Superb energy resolution

- Excellent control of energy response systematics
- Background reduction

Similar concept to previous LS experiments, but much **LARGER** and **MORE PRECISE**

LS Detectors	Target mass
Daya Bay	20 t x 8
Borexino	300 t
KamLAND	1 kt
JUNO	20 kt

JUNO Project

- Collaboration established in 2014
- Now > 700 collaborators from 74 institutions in 17 countries/ regions

Civil Construction

- Civil construction started in 2015, completed in 2021
- Challenging operation:
 - 650 m overburden
 - Saw more water than anticipated
- Have our own campus with > 200 people

Overview of Installation Process

Central Detector (CD)

- Use stainless steel (SS) frame to hold acrylic sphere and mount PMTs
 - Fully complete except for bottom 4 layers
- Production of acrylic panels is complete
 - 263 panels in total, 12 cm in thickness
 - Special production line for low backgrounds (< 1 ppt U/Th/K)
- Acrylic sphere construction well underway
 - Built from the top
 - Stainless steel bars connecting acrylic and structure, sensors for stress monitoring
 - 15/23 layers finished and defects repaired

Hydraulic Lifting platform

25

The first five layers of Acrylic

Sanding and polishing

Bars between SS and acrylic

Muon Veto System

- The CD will be immersed in a cylindrical, instrumented water pool:
 - 35 kton ultrapure water with a circulation system (U/Th/K<10⁻¹⁴ g/g and Rn<10 mBq/m³, attenuation length>40 m)

 Shield central detector against
 radioactivity from rock and neutrons from cosmic rays

 Reconstruct and veto cosmic-ray muons

Critical to keeping the cosmogenic backgrounds under control

- Some details about the water pool:
 - 2,400 20-inch PMTs

Double-

purpose:

- 5 mm HDPE lining to stop Rn from rock
- Detection efficiency expected to be > 99%

Muon Veto System

- The muon veto system will also have
 a top tracker:
 - 3-layers of plastic scintillators
 - Reuse of OPERA's target tracker

- About 60% partial coverage
- There will also be a magnetic field (EMF) shielding system

Pushing the Limits

• With 3% @ 1 MeV, JUNO will be the LS detector with the best energy resolution in history

stochastic term: depends on photostatistics non-stochastic term: residual issues (stability, uniformity, linearity) after calibration

- Most obvious (although not sufficient) requirement for achieving the target energy resolution: seeing enough photons.
 - No approach can singlehandedly provide all the light needed. Have to attack the problem from different angles:

	KamLAND	JUNO	Relative Gain	use KamLAND as reference
Total light level	250 p.e. / MeV	>1200 p.e. / MeV	5 🔸	
Photocathode coverage	34%	~78%	~2	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Light yield	1.5 g/l PPO	2.5 g/l PPO	~1.5	••••• optimized LS
Attenuation length / R	15/16 m	20/35 m	~0.8	
PMT QE×CE	20%×60% ~ 12%	~30%	~2	more efficient PMTs

Large PMT System

JUNO uses large 20-inch PMTs as its main light-detection device:

Arranged as tightly as possible, with a clearance of 3 mm 、

2 complementary (and new!) technologies:

- Good price
- Mass-produced by NNVT (China)
- Excellent TTS (2.7 ns FWHM)

Both reach QE x CE ~ 30%!

JUNO's central detector uses 13,000 MCP-PMTs and 5,000 Dynode-PMTs

California, Irvine

Photocathode characteristics

Electronics

- LPMT and sPMT frontend electronics are housed in SS underwater boxes
 - Power the PMTs, decouple signal from HV, process the analog signals and send the information to surface via digital CAT5 cables

About 2/5 of all PMTs have been installed

Have performed several commissioning dryruns with lights-off & high-voltage on to ensure integrity of PMTs + electronics after installation

Calibration System

 Achieving a light level of 1200 p.e. / MeV is not enough. Also have to keep the systematics under control

<u>JHEP 2021, 04 (2021)</u>

- Have an **comprehensive calibration program** consisting of 4 mutually complementary systems:
 - 1D: Automated Calibration Unit (ACU) deploys radioactive and laser (1ns, keV-TeV range) sources along the central axis
 - **2D**: Cable Loop System (CLS) to scan vertical planes
 - **2D**: Guide Tube to scan the outer surface of the central detector (where the CLS cannot reach)
 - **3D**: Remotely Operated Vehicle (ROV) operating inside the LS to scan the full volume
 - + sPMT system

Goal is to keep the energy scale uncertainty < 1%

Bird's Eye View of the Detector

Bird's Eye View of the Detector

Bird's Eye View of the Detector

Inside the Acrylic Sphere

Inside the Acrylic Sphere

Between the Acrylic and the PMTs

Radiopurity & Cleanliness

- Radiopurity of raw materials stringently controlled:
 - Material screening
 - Production handling

Better than spec by ~15% ----

- Have achieved good
 environmental cleanliness
 - Radon concentration below 200 Bq/m³ requirement
 - Cleanliness: class 20,000
 - Very challenging to control cleanliness of such a big volume

Singles (R < 17.2 m,	Design	Change	Comment				
E > 0.7 MeV)	[Hz]	[Hz]					
LS	2.20	0					
Acrylic	3.61	-3.2	10 ppt -> 1 ppt				
Metal in node	0.087	+1.0	Copper -> SS				
PMT glass	0.33	+2.47	Schott -> NNVT/Ham				
Rock	0.98	-0.85	3.2 m -> 4 m				
Radon in water	1.31	-1.25	200 mBq/m ³ -> 10 mBq/m ³				
Other	0	+0.52	Add PMT readout, calibration sys				
Total	8.5	-1.3					

JHEP 2021, 102 (2021)

Liquid Scintillator

- Main requirements: high light yield, high transparency and high radiopurity
- Using a recipe inspired from Daya Bay's experience

- No doping, large fluor concentration

Recipe optimized with a decommissioned Daya Bay detector whose results were extrapolated to JUNO size using a new optical model

Recent measurements: LAB attenuation length > 24 m, LS attenuation length > 20 m

LS Production and Purification

 Full chain includes four purification plants, LS mixing, QA/QC equipment, highpurity N₂ and water production systems

 Recently had a successful commissioning run with all equipment running simultaneously

OSIRIS and Filling Strategy

Just filled first batch of JUNO LS into OSIRIS pre-detector on March 11

EPJ C 81 (2021) 11, 973

- 3 m x 3 m acrylic vessel, 76 MCP-PMTs, 3m of water shielding
- U/Th estimation by Bi-Po-214 coincidence tagging

Study in progress; decays dominated by ²²²Rn —

 Analysis for other isotopes (e.g. ¹⁴C, ²¹⁰Po) in progress

- Gearing up for filling as soon as detector installation is complete (this year!)
 - Seal and wait for ~2 weeks (achieve class 1,000)
 - Remove acrylic's protective film and wash with high-pressure water spray
 - Fill with water and then gradually replace acrylic sphere with LS

JUNO-TAO

- JUNO will also deploy a satellite detector called TAO (Taishan Antineutrino Observatory)
 - 44 m from a 4.6 GW_{th} reactor
 - 2.8 ton (1 ton fiducial) Gd-LS volume
 - 700k IBDs/year, ~10% background
 - SiPM and Gd-LS at -50°C
 - < 2% @ 1 MeV energy resolution</p>

Main goals: measure the reactor antineutrino spectrum with unprecedented resolution

 Start of operations around the same time as the main JUNO detector

JUNO-TAO Physics

- TAO's physics goals:
 - See fine structure due to Coulomb corrections
 - Serve as benchmark for JUNO, other experiments, and nuclear databases
 - Search for sterile neutrinos
 - Study flux and shape change with fuel evolution & decompose isotope spectra

Note: needs to be reassessed with new TAO baseline of 44 m

Summary & Conclusions

Summary & Conclusions

- JUNO is a multipurpose neutrino observatory with a rich program in • neutrino physics and astrophysics
 - Neutrino mass ordering, oscillation parameters, supernova v's, solar v's, atmospheric v's, geo-v's, nucleon decay, and others
- JUNO is pushing the limits in liquid scintillator detection technology
 - New solutions in terms of PMT technology, liquid scintillator properties and detector construction
 - Developing some unique approaches to calibration and to the reduction of systematic uncertainties
- Progress is well underway, and expect to begin filling this year
- Anticipate some exciting results (and maybe some surprises?) ullet

California, Irvine

Thank you for your attention!

University of California, Irvine