Photon Detection in CAPTAIN

Keith Rielage Los Alamos National Laboratory

The CAPTAIN Detector

CAPTAIN: Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos

Cryostat

Capacity: ~7700 L

External dimensions

Flange diameter: 111"

Work deck height: 101"

All cryogenic and instrumentation

connections made through top head

Work deck for worker safety and

convenience

TPC

hexagonal prism, vertical upward drift

5 instrumented tons

2k channels with 3 mm spacing

Laser calibration system Liqui MicroBooNE Cold electronics

The CAPTAIN Prototype

- Reuses cryostat from UCLA
- About 1m tall x 1.1 m diameter
- TPC 30cm drift by 99cm
- 3mm wire spacing
- 500 V/m drift field
- Laser system (top view ports
- Photon detection system
- Neutron run at LANSCE next FY

Physics Goals: By end of FY14

- Within the scope of the LDRD (Laboratory Directed Research & Development program)
 - •Studies for future CP experiments (e.g. LBNE)
 - The LBNE far detector will not be magnetized, cannot do μ^+/μ^- separation by track curvature
 - Approximately 75% of μ^- are captured by the argon nuclei
 - Gamma and neutron cascade
 - All μ+ will decay
 - If we can identify the captures with high purity and with reasonable and quantifiable efficiency, we can do neutrino/anti-neutrino separation
 - This allows CP studies of long-baseline and atmospheric neutrinos
 - Supernova-related studies
 - spallation backgrounds
 - low energy particle identification, e.g. β/γ
 - Calibration system development laser calibration

Photon detection system development

Physics Goals: Future

Outside the scope of the LDRD

- Run in a neutron beam (at LANL)
 - neutrino energy reconstruction
 - neutron induced pion production
 - neutron induced radioactive background

Neutrino running

- SNS running -- energies relevant to supernovae
 - neutrino argon cross sections
 - study de-excitation gammas from nuclear decays
 - reconstruction demonstration with real data
- NUMI running -- energies relevant to long-baseline oscillations
 - exclusive and inclusive neutrino interaction in resonance and DIS region
 - explicit experience with neutrino energy reconstruction

Neutron Running at LANSCE

- Characterize neutron interactions to understand energy by neutrons in neutrino interactions with Ar
- Measure response of LArTPC to neutrons
 - multi-particle events in high-energy regime
 - characterize reconstruction efficiency of these events
- Measure "cosmogenic" production of radioactive isotopes
 - validate simulations of spallation
 - background for neutrino interactions
- Want neutron beam with cosmic-ray energy spectrum
- Ability to know neutron energy, event-by-event
- Run prototype this Fall at LANSCE
 - WNR Facility provides a high-flux neutron beam with spectrum similar to cosmic-ray neutrons
 - Energy via time of flight with photon detection system
- Will attenuate the beam flux to achieve 1 neutron per drift time (200 μs)

SNS: Spallation neutron source

 Neutrino beam from stopped π available at Oak Ridge National Laboratory

- Supernova neutrino spectrum overlaps with stopped π neutrino spectrum
- Fluence at ~50m from the SNS amounts to ~a supernova a day

Figures by Kate Scholberg

NuMI Run

 Use NuMI beamline at Fermilab --on-axis location

- Captain will "contain" 10% of events
 - excluding muons and neutrons
 - 370,000 events/year
- Measure neutrino-Ar cross sections above 2 GeV
- Understand event reconstruction in this energy regime
 - particle id and energy in high multiplicity events

Photon Detection System

Goals of CAPTAIN PDS

- Triggering of non-beam events
- Evaluation of photon timing to improve event reconstruction
- Investigate alternative PDS schemes
- Time of flight for neutron run
- Baseline PDS will provide:
 - 11 pe/MeV in prototype
 - 2.2 pe/MeV in CAPTAIN

Photon Detector

Baseline:

- Hamamatsu R8520-500
 - 1" square
 - 25% QE at LAr temperature, special Bialkali LT
- Have 16 PMTs currently
- Place one in each of the 6 hexagon triangles on both top and bottom, and two each at center
- Developing base voltage divider based on parts used on MiniCLEAN bases

Electronics

- Digitizer
 - Have two CAEN V1720
 - Eight channels each, 250 MHz
 - Optical fiber readout
- May use TDC for timing studies
- DCDaq software -- currently used for MiniCLEAN and DEAP with digitizer
- Will integrate with time syncing into the rest of electronics (MicroBooNE's for TPC cold frontend and backend)

Options

- Wavelength Shifter
 - TPB
 - current baseline
 - experience from MiniCLEAN
 - degradation from UV
 - Bis-MSB
 - may be more stable
 - cheaper
 - Others?
- Will put WLS on thin acrylic slide in front of PMT
 - Can easily change the WLS
 - Insertion at last minute before closing up to minimize degradation

More Options

- Use prototype and CAPTAIN to test many other options for PDS
 - Acrylic light guides
 - Other readout devices (SiPMTs, larger PMTs, etc.)
 - Other electronics

Neutron ToF

- Use PDS to determine time of flight of neutrons to assess energy
 - For prototype expect ~2 pe/MeV of prompt light
 - Should be able to have about 2-3 ns uncertainty above 10 MeV
 - Could improve if we delay signal and use second digitizers (500 MHz effective)

Current Schedule

- Prototype schedule
 - TPC parts in hand June 1
 - August -- TPC in LAr
 - Cosmic runs
 - Neutron run when beam time granted at LANSCE

CAPTAIN

- Cryostat in fabrication, delivery September 2013
- TPC fabrication this summer
- TPC assembly in October
- Laser and PDS integration in November
- Cosmic runs

Summary

- Two LAr TPCs are under construction at LANL
 - Plan to serve as test benches for PDS options as well as test laser calibration and other systems
 - Will be used in neutron and neutrino beams
 - Still time to get involved -- let myself or Chris Mauger (cmauger@lanl.gov) know