Photon Detection in CAPTAIN

Keith Rielage
Los Alamos National Laboratory
CAPTAIN: Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos

Cryostat
- Capacity: ~7700 L
- External dimensions:
 - Flange diameter: 111"
 - Work deck height: 101"
- All cryogenic and instrumentation connections made through top head
- Work deck for worker safety and convenience

TPC
- Hexagonal prism, vertical upward drift
- 5 instrumented tons
- 2k channels with 3 mm spacing

Laser calibration system
MicroBooNE Cold electronics
The CAPTAIN Prototype

- Reuses cryostat from UCLA
- About 1m tall x 1.1 m diameter
- TPC 30cm drift by 99cm
- 3mm wire spacing
- 500 V/m drift field
- Laser system (top view ports)
- Photon detection system
- Neutron run at LANSCE next FY
Within the scope of the LDRD (Laboratory Directed Research & Development program)

Studies for future CP experiments (e.g. LBNE)
- The LBNE far detector will not be magnetized, cannot do μ^+/μ^- separation by track curvature
- Approximately 75% of μ^- are captured by the argon nuclei
- Gamma and neutron cascade
- All μ^+ will decay
- If we can identify the captures with high purity and with reasonable and quantifiable efficiency, we can do neutrino/anti-neutrino separation
- This allows CP studies of long-baseline and atmospheric neutrinos

Supernova-related studies
- spallation backgrounds
- low energy particle identification, e.g. β/γ

Calibration system development – laser calibration
- Photon detection system development
Physics Goals: Future

• **Outside the scope of the LDRD**

• **Run in a neutron beam (at LANL)**
 - neutrino energy reconstruction
 - neutron induced pion production
 - neutron induced radioactive background

• **Neutrino running**
 - SNS running -- energies relevant to supernovae
 - neutrino argon cross sections
 - study de-excitation gammas from nuclear decays
 - reconstruction demonstration with real data
 - NUMI running -- energies relevant to long-baseline oscillations
 - exclusive and inclusive neutrino interaction in resonance and DIS region
 - explicit experience with neutrino energy reconstruction
Neutron Running at LANSCE

- Characterize neutron interactions to understand energy by neutrons in neutrino interactions with Ar
- Measure response of LArTPC to neutrons
 - multi-particle events in high-energy regime
 - characterize reconstruction efficiency of these events
- Measure “cosmogenic” production of radioactive isotopes
 - validate simulations of spallation
 - background for neutrino interactions
- Want neutron beam with cosmic-ray energy spectrum
- Ability to know neutron energy, event-by-event
- Run prototype this Fall at LANSCE
 - WNR Facility provides a high-flux neutron beam with spectrum similar to cosmic-ray neutrons
 - Energy via time of flight with photon detection system
- Will attenuate the beam flux to achieve 1 neutron per drift time (200 μs)
• Neutrino beam from stopped π available at Oak Ridge National Laboratory

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

$$\mu^+ \rightarrow e^+ + \bar{\nu}_\mu + \nu_e$$

• Supernova neutrino spectrum overlaps with stopped π neutrino spectrum

• Fluence at ~50m from the SNS amounts to ~a supernova a day

Figures by Kate Scholberg
NuMI Run

• Use NuMI beamline at Fermilab -- on-axis location

• Captain will “contain” 10% of events
 • excluding muons and neutrons
 • 370,000 events/year

• Measure neutrino-Ar cross sections above 2 GeV

• Understand event reconstruction in this energy regime
 • particle id and energy in high multiplicity events
Photon Detection System

- **Goals of CAPTAIN PDS**
 - Triggering of non-beam events
 - Evaluation of photon timing to improve event reconstruction
 - Investigate alternative PDS schemes
 - Time of flight for neutron run

- **Baseline PDS will provide:**
 - 11 pe/MeV in prototype
 - 2.2 pe/MeV in CAPTAIN
Photon Detector

• Baseline:
 • Hamamatsu R8520-500
 • 1” square
 • 25% QE at LAr temperature, special Bialkali LT
 • Have 16 PMTs currently
 • Place one in each of the 6 hexagon triangles on both top and bottom, and two each at center
 • Developing base voltage divider based on parts used on MiniCLEAN bases
Electronics

- Digitizer
 - Have two CAEN V1720
 - Eight channels each, 250 MHz
 - Optical fiber readout
 - May use TDC for timing studies
 - DCDaq software -- currently used for MiniCLEAN and DEAP with digitizer
 - Will integrate with time syncing into the rest of electronics (MicroBooNE’s for TPC cold frontend and backend)
Options

- Wavelength Shifter
 - TPB
 - current baseline
 - experience from MiniCLEAN
 - degradation from UV
 - Bis-MSB
 - may be more stable
 - cheaper
 - Others?
- Will put WLS on thin acrylic slide in front of PMT
 - Can easily change the WLS
 - Insertion at last minute before closing up to minimize degradation
More Options

- Use prototype and CAPTAIN to test many other options for PDS
 - Acrylic light guides
 - Other readout devices (SiPMTs, larger PMTs, etc.)
 - Other electronics
Neutron ToF

- Use PDS to determine time of flight of neutrons to assess energy
 - For prototype expect ~ 2 pe/MeV of prompt light
 - Should be able to have about 2-3 ns uncertainty above 10 MeV
 - Could improve if we delay signal and use second digitizers (500 MHz effective)
Current Schedule

• Prototype schedule
 • TPC parts in hand June 1
 • August -- TPC in LAr
 • Cosmic runs
 • Neutron run when beam time granted at LANSCE

• CAPTAIN
 • Cryostat in fabrication, delivery September 2013
 • TPC fabrication this summer
 • TPC assembly in October
 • Laser and PDS integration in November
 • Cosmic runs
Two LAr TPCs are under construction at LANL

- Plan to serve as test benches for PDS options as well as test laser calibration and other systems
- Will be used in neutron and neutrino beams
- Still time to get involved -- let myself or Chris Mauger (cmauger@lanl.gov) know