

X-Disciplinary Hunt for Dark Matter: ML and Material Science Meet Astroparticle Physics

CARLOS BLANCO

Direct Detection: New Materials & Methods

Recoil-induced *fluorescense* (radiative deexcitation)

• unit that de-excites by emitting a photon Could be:

- Nanostructures (quantum dots)
- Molecules in ordered crystal
- Hybrid material (QDs in Molecular matrix)

ML to explore vast data of material space

З

Direct Detection: Interaction Rate

Rate spectrum (events in detector)

$$\Gamma \sim \int \frac{d^3 \vec{q}}{q} \eta(v) |F_{\rm DM}(q)|^2 |f_{i \to f}(q)|^2$$

Mean inverse velocity (Astrophysics)

Transition form factor (Condensed matter / Chemistry)

 $\eta(v)$

$$f_{i \to f}(q) = \langle \tilde{\Psi}_f(k+q) | \tilde{\Psi}_i(k) \rangle$$

Dark matter form factor (Particle physics)

$$F_{\rm DM}(q) \propto \begin{cases} 1 & , \text{ Contact interaction} \\ \left(\frac{1}{q}\right)^2, \text{ Long-range interaction} \end{cases}$$

Fluorescence with DM

Probability for the photon to free stream $\Phi_{\rm FB} \sim (1 - a_{xx})$ e.g. molecular crystals: $\Phi_{\rm FB} \approx 65\%$

First Experimental Setup

[CB, Collar, Kahn, Lillard: 1912.02822]

About 6 months from theory development to results.

The Field in Context

Many materials are proposed to probe the sub-GeV Space

In 2017:

Short term (2 years)

Medium term (2-5 years)

Outlook and Potential Reach

Outlook and Potential Reach

Outlook and Potential Reach

Pound (kg) for Pound (kg) molecules produce about as much signal as e.g. Si.

Fluorescence with DM

Next Step

Option 1 Reduce background in the excitation.

Molecular crystals Anisotropic excitation → Time-varying DM signal

Option 2 Reduce background in the emission.

Quantum dots

Multiple excitons \rightarrow Time-coincident DM signal

Directional Detection

Effective dark matter "wind" from relative motion

Change in relative orientation between detector and dark matter wind leads to *daily* modulation

Carman, et.al. '18 (J. of Crystal Growth)

Delocalized and planar network of double bonds

Molecular planes oriented in crystal lattice

Large optical-quality crystals

Daily Modulation

(Contact interaction)

(Long-range interaction)

Modulation amplitude remains as high as 10% even at the highest masses due to the fundamental anisotropy of the molecular form factor.

The Molecular Migdal Effect(s)

Center of mass recoil (CMR)

Cause by center of mass motion

Analogous to atomic Migdal effect

$$P_{CMR} \sim \frac{m_e}{M_{mol}}$$

Moving whole molecule \rightarrow BIG penalty

Non-adiabatic coupling (NAC)

Effect beyond Born-Oppenheimer

$$P_{NAC} \sim \frac{m_e}{M_N}$$

Crumpling molecule \rightarrow small Penalty 16

Directional Molecular Migdal Effect

Molecular alignment \rightarrow Directional electronic excitation \rightarrow Directional molecular Migdal effect(s)

Molecular Migdal Effect(s)

[[]CB, Harris*, Kahn, Lillard, Perez-Rios: 2208.09002]

Fluorescence with DM

Next Step

Option 1 Reduce background in the excitation.

Molecular crystals Anisotropic excitation → Time-varying DM signal

Option 2 Reduce background in the emission.

Quantum dots

Multiple excitons \rightarrow Time-coincident DM signal

Nanocrystals: Quantum Dots

Quantum confinement affects long-wavelength physics

Quantum confinement

Quantum Dots: Coincident Signal

Absorption → Very *energetic* exciton

Multi-exciton generation \rightarrow several excitons If energy is greater than twice the band gap

Radiative recombination → coincident photons Band-edge excitons produce light

Deployment: DarkDot & QUADRA

 $R \sim R_{PMT} + \delta R$ $R_{2\gamma-QD} \lesssim \Delta T R_{PMT}^{3/2}$ $R_{2\gamma-QD} \lesssim \Delta T R_{PMT}^{3/2}$ $R_{2\gamma-QD} \lesssim \Delta T R_{PMT}^{3/2}$

Figure 2: (Left:) Inner structure of the current SUXESs facility. (Right:) A diagram of a single module for the proposed detector.

Experimental Collaborations 10^{-30} DarkDot (SNSPDs): MIT (Host), Stockholm U.U.QUADRA (Abalone PMTs): Stockholm U. (Host), MIT 10^{-37}

Deployment: DIANA* Daily Modulation in an Intrinsically ANisotropic Array

 $m_{\chi} \,[{
m MeV}]$

Deployment: t-stilbene

Detecting fluorescence with Si

Skipper CCD Measurements of trans-Stilbene

Deployment: t-stilbene

Deployment: t-stilbene

Calibrate at mg-scale

Scale to kg-scale

Credit: Dane Johnson Freedman Group (MIT)

Natalia Zaitseva (LLNL)

Finding Optimal Targets

Problem: Chemical space is unreasonably large How many molecules possible with C, O, N, F, H?

< 9 atoms: 100s of Thousands (DFT Computable)

< 30 atoms: 100s of Billions (Intractable)

...toluene has 15, xylene has 18, t-stilbene has 26

Method

1. Look for known favorable properties - *cheminformatics*

2. Extra(intra)polate ont

Property prediction Molecular Generation

Using exhaustive database (< 9 atoms) Characterize neural nets → Possible to learn from small subsample

Next: Large but sparse dataset up to 10s of atoms

Molecular Space: Variational Autoencoders

Property prediction: Molecular latent space

Property prediction: Molecular latent space

ML Proposed Molecules

Property prediction Molecular Generation

- Molecular generation
- \rightarrow Generate candidate molecule *shortlist*: Min($\Delta E \sim 2eV$), Max($\langle \vec{r} \rangle$), filter for synthetic feasibility.
- \rightarrow Cluster by molecular similarity
- \rightarrow Extract largest common substructure

Beyond direct detection

Astrophysical volume of molecules

Same theoretical techniques \rightarrow Predict rates in *astrophysical* objects

Dark Matter can be captured inside celestial objects.

Assuming equilibrium is reached: Jupiter $\Gamma_{\rm ann} = f_{\rm cap} \times \pi R^2 \rho_{\chi} v_{\chi} \sqrt{\frac{8}{3\pi} \left(1 + \frac{3}{2} \frac{v_{\rm esc}^2}{v_{\chi}^2}\right)}$ Saturn Geometric scaling Enhancement due to gravity Uranus Neptune $P_{\rm ion}^{\rm DM} = \frac{\Gamma_{\rm ann} \times f_{\rm iono}}{4 - D^2}$

Equilibrium Radial Distribution

Figure 3. Dark matter radial profile in the Solar System gas and ice giants as labelled, for a 0.1 GeV (full) and a 1 GeV dark matter particle. The distance to the planet cores are normalized by each planetary radius; values above 1 indicate the atmosphere.

Ionizing radiation generates H_{3^+}

$$H_2 + e^{-*} \to H_2^+ + 2e^-$$

 $H_2^+ + H_2 \to H_3^+ + H$

 H_{3}^{+} radiates extremely efficiently in the IR. It is Jupiter's *thermostat*.

Figure 1. Schematic of H_3^+ production in Jupiter. Auroral H_3^+ emission near the magnetic poles is sourced by precipitating electrons, and solar extreme UV irradiates the day side and dominates H_3^+ production near the equator. No H_3^+ is expected from known processes at low latitudes on the night side, making it an ideal dark matter signal region.

Night-side Intensity $I^{\mathrm{H}_3^+} < 0.03 \ \mathrm{mW/m^2/\mu m/sr}$

Day-side Intensity $I_{\rm day}^{{
m H}_3^+} = 0.09~{
m mW/m^2/\mu m/sr}$

Day-side Ionizing Power $P_{\rm ion}^{\rm EUV} = 62 \; \mu {\rm W}/{\rm m}^2$

$$\begin{split} \text{Night-side Ionizing Power} \\ P_{\text{ion}}^{\text{night}} < \frac{I_{\text{max}}^{\text{H}_{3}^{+}}}{I_{\text{day}}^{\text{H}_{3}^{+}}} \times \frac{E_{\text{mol}}(T_{\text{day}})}{E_{\text{mol}}(T_{\text{night}})} \times P_{\text{ion}}^{\text{EUV}} \times 1.5 \\ \\ \hline P_{\text{ion}}^{\text{night}} < 40 \pm 17 \; \mu \text{W/m}^{2} \end{split} _{37}$$

Ionizing radiation generates excited H₂

Ground state Excited state

$$e^- + H_2(X^1\Sigma_g^+) \rightarrow e^- + H_2(B^1\Sigma_u^+)$$

Ground state Excited state $e^- + \mathrm{H}_2(X^1\Sigma_g^+) \to e^- + \mathrm{H}_2(C^1\Pi_u)$

Figure 1. A planet with aurorae (at the poles, magenta), and a dark matter induced ultraviolet airglow (isotropic, green).

Collisions with charged particles drive excitations

Singlet excited states have short lifetimes $\tau \sim ns$.

Table I. Measurements of the H_2 Lyman and Werner flux from the nightside equator region of the Solar System's giant planets, and corresponding input power into the planet's upper atmosphere. Uranus and Neptune's flux includes the Rydberg bands from H_2 and may originate from the dayside.

Planet	Flux [R]	Power $[\mu W/m^2]$	Space Probe Ref.
Jupiter	$3.1^{+1.9}_{-1.5}$	$0.31^{+0.19}_{-0.15}$	New Horizons [22]
Saturn	< 10	< 1	Voyager 1 $[13]$
Uranus	46	4.6	Voyager 2 $[24]$
Neptune	19 ± 3	1.9 ± 0.3	Voyager 2 $[24]$

10 R in H_2 UV surface brightness corresponds to about 1μ W/m² energy in precipitating electrons.

Constraining Spin-dependent Scattering

The UV signal

Figure 5. UV airglow limits on spin-independent dark matter interactions for the Solar System's giant planets, Earth, and a potential local Super-Jupiter, as labeled.