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Correlated qubit errors are a hindrance to quantum computing, but when using
quantum chips as a particle detector, they can be a sign of energy deposits. Using
a four transmon qubit chip in the NEXUS fridge at Fermilab, we have taken data
to better understand the impact ionizing radiation has on the correlated errors. By
running the experiment underground in the MINOS cavern, we reduce the amount
of cosmic ray muons that can cause errors on the qubit (in addition to gammas from
ionizing radiation), thus controlling the background of the experiment. To analyze
this data, we need a error detection code that is robustly tested with understood
efficiencies. In this work, we describe the process of getting these efficiencies using
a rolling χ2 error detection code.
FERMILAB-PUB-24-0182-STUDENT

I. INTRODUCTION

As described in Wagner et al. 1 , correlated errors that are detrimental in quantum com-
puting can be used in particle detection to identify energy deposits. An error on a quantum
chip is any loss of information, either by decoherence or dephasing. We investigate the
cause of these errors, specifically looking at the role gammas from ionizing radiation. This
work focuses on the error detection code used to identify errors in the data.
A qubit error is any loss of information from a qubit chip. Unlike a classical chip, which

can be in either the ground state |0⟩ or excited state |1⟩, a qubit can be in either state
or neither. In addition to these states, there is also a phase aspect of the qubit state. A
decoherence error is a loss of state when the qubit relaxes from the excited state, |1⟩, to the
ground state, |0⟩. The time of relaxation is referred to as T1.
There are also charge burst errors. These errors are caused by trapped charges in the

bulk substrate altering the electric field of the qubit island, resulting in a loss of state.
These charge burst errors are what we are investigating. In the data, these errors appear
as ‘jumps’, due to the sudden discontinuity of the data. Thus, we will refer to these errors
as ‘charge jumps’.
Wilen et al. 2 stipulates that ionizing radiation and cosmic ray muons that are incident

on the chip is one cause of these errors. In this work, we look to further quantize the effect
of ionizing radiation and cosmic ray muons. To do so, we run the same experiment with
the same four qubit chip from Wilen et al. 2 100 meters underground, drastically reducing
the cosmic ray muon rate.

II. METHODS AND DATA

In this section, we will explain the setup of the experiment and a description of the
facilities, as well as how we created simulated data for testing the code, as well as details
on how the point by point error detection code works.
This experiment is a continuation on the work done in Wilen et al. 2 . We use the same

4 transmon qubit chip. The goal of our experiment is to better understand the effect (or
lack of effect) of ionizing radiation gammas and cosmic ray muons on qubit errors. We do
so by controlling the radiation environment in which the dilution fridge is running. The
NEXUS fridge is located in the MINOS cavern at Fermilab, over 100 meters below the
surface. Surrounding the dilution fridge is a large, movable, 4 inch thick lead shield that
fully encloses the fridge. This work uses two radiation configurations of the shield, the first
being the shield closed (SC) configuration, which has the lowest incident rate, and the other
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being shield open (SO). Due to the rock overburden, the cosmic ray muon flux is decreased
by 99%. Wilen et al. 2 suggests that the qubit errors are due to either muons or gammas.
As we have significantly reduced the muon rate, we can investigate the role of gammas.

A. Simulated Data

To understand the efficiency of the error detection code, we use simulated Ramsey tomo-
graphic sweeps. In Ramsey tomography, a charge bias is applied to the qubits and measure
the state population as a function of charge bias. We simulate this by generating a uniform
distribution of jump sizes (the size of the jump is defined by the difference in the phase
before the jump occurs, and the new phase after the jump) in the range of 0.01 e to 0.5 e.
We also randomly select which sweeps will have jump(s) injected and where in the sweep
the jump(s) are injected.
To inject a jump into the tomographic sweep, we start with a jump-less period template

sweep, which is specific to each of the four qubits. Each tomographic sweep consists of 80
points, where, in a jump-less sweep, each point corresponds to 0.0125 e of bias charge. To
inject the jumps, we up-sample the template to have 1265 points. In other words, for each
‘real’ data point, there are 16 interpolated points. At a randomly selected index in the up-
sampled sweep, the phase is offset according to the jump size, and the sweep is completed
with the new phase. If multiple jumps are injected into one sweep, then the process repeats
for each injected jump. After all jumps are injected, the sweep is down-sampled back to 80
points.

FIG. 1. Example of a Ramsey tomography sweep from Wilen et al. 2 ; On the y axis is the Ramsey
amplitude vs offset charge on the x axis. The orange points demonstrate a sweep with no errors,
which is seen through the orange points following the orange line for the duration of the sweep.
The following sweep (shown in green) has an error in the middle of the sweep. The green points
do not match the dotted green line prior to error, instead only matching the solid green line after
the error.)

B. Pt. by Pt. Error Detection Code

The point by point error detection code uses a rolling χ2 to determine how well the data
matches the template; when the data deviates from the template, resulting in a high χ2

value, a jump is detected.
The first step is taking the χ2 (Equation 1) of each of the 80 real points and each

interpolated point of the template, as well as taking the combined χ2
n (Equation 2). The
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combined χ2
n is the average χ2 across the extended indices. From the combined χ2

n, the
minimum is selected. If the minimum χ2

n is greater than the least χ2 threshold, then a jump
is found. Before it is confirmed to be a jump, there are two more quality checks to confirm
the jump as a true positive.

χ2 =
xi − xϕ

σϕ
(1)

χ2
n =

1

n

n∑
i

χ2[i, ] (2)

Due to the rolling χ2 nature of the jump finder, the code needs to have enough points to
accurately find the χ2 of the data to the template. Jumps at the beginning of the sweep are
more difficult for the code to find, as there are fewer points than ideal to understand how
well the data fits the template. To avoid a high instance of false positives at the beginning
of a sweep, jumps are tagged after a set number of interpolated indices (out of 1265 points)
have been checked in the code. This limit is referred to as the Jump Num. Limit in Table
I.

FIG. 2. An example of an error (also referred to as a jump) that is detected by our error detection
code. In the upper plot, which shows the tomographic sweep, prior to the error, the data (blue
points) follows the blue line. After the error, the data follows the green line. The middle plot shows
the minimum combined χ2. The lower plot illustrates the difference of phase before and after the
error.

Once a jump is found, the phase before the jump is noted and saved, as well as the phase
following the jump. Another check to ensure the jump tagged is real is to confirm that
the pre-jump phase subtracted from the phase after the jump is greater than the Phase
Dif. Limit parameter. The pre-jump phase is determined by calculating what phase of
the template best matches the sweep before the jump is detected. We use the Back Off
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FIG. 3. Example of an efficiency plot for a single set of simulated data on qubit 1; The upper plot
is a histogram that shows how many jumps were injected (blue), how many jumps were found in
total (red) and how many jumps were found and matched (purple). The lower plot divides the
number of found jumps by the number of injected jumps per bin. This is once again done for all
found jumps (red) and for matched jumps (purple). The error detection method utilized is ideal
for jump with a size greater than 0.1 e, so we are interested in the efficiency above that threshold,
which is denoted by the grey vertical dotted line.

parameter to determine when before the jump we should determine the pre-jump phase.
We calculate the post jump phase by selecting the phase of the template that best fits the
phase of the sweep following the jump.
After we have run the simulated data through the error detection code, we want to show

how well the error detection code works as a function of jump size. To do so, we bin the
jumps found and jumps injected by jump size, and divide the number of found jumps by
the number of injected jumps per bin. We then fit an analytic curve to the resultant plot to
understand the efficiency for jumps with a size greater than 0.1 e. This is shown in Figure 3.

C. Index Matching

After running the error detection code, we checked that the jumps found were detected
within a reasonable time frame after the jump was injected. Using a list of the sweep indices
where jumps were found and another of where jumps were injected, we subtract the found
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TABLE I. Parameters for each Qubit for Pt. by Pt. Error Code

Q1 Q2 Q3 Q4 SC Q4 SO
Least χ2 Threshold 5 5 7 10 8

Jump Num. Limit (e) 0.035 0.035 0.044 0.037 0.041
Phase Dif. Limit (e) 0.053 0.053 0.053 0.057 0.046

Back Off (e) 0.003 0.003 0.007 0.004 0.004
Combined χ2 Cut 5 5 3 3 5

indices from the known (injected) indices. The resulting list is used to remove any false
positives (pairs where the difference is negative, meaning a jump was detected before any
were injected) or where too much time has passed between when the jump was injected and
found. The size of this window varies by qubit. The purple histogram and curve in Figure
3 includes just these correctly tagged jumps.

III. ANALYSIS

To calculate the efficiency of the error detection code, we repeat the whole process, from
the start (creating the simulated data), though the end (index matching the found jumps
to the injected jumps and fitting the analytical curve) 75 times for each qubit, and twice
for qubit 4.

FIG. 4. Plot of all of the efficiency curves from 75 runs with qubit 1. The Gaussian in Figure 5
are fit to the distributions of the violet lines for each respective qubit.

We use two templates for Q4 due to the quality of the data. The amplitudes of the
SC data varies more than it does in other qubits; using this template leads to much lower
efficiency. The SO (shield open) template is more representative of the data for the SO
configuration. Using the best fit curve of the matched jumps (violet) from the lower plot
of Figure 3 (referred to as the efficiency curve) for jump sizes greater than 0.1 e2 of the
found jumps divided by injected jumps for bins of jump sizes, we get the spread of the
asymptotes of the best fits. This gives is the mean µ and standard deviation σ of the
efficiencies. We then divide the raw qubit rates by the found efficiencies to get the actual
rates. Uncertainties on the efficiency are then included as systematic uncertainties in the
final rates but not reported here as the rate analysis is ongoing..
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FIG. 5. Using the efficiency curves from all 75 runs for each qubit (for qubit 1, the violet lines
from Figure 4), we then fit a Gaussian to the distribution of efficiencies of detecting jumps with a
size greater than 0.1 e, to get the mean efficiency for each qubit, as well as the standard deviation.

TABLE II. Efficiency Adjusted Rates for each qubit

Q1 Q2 Q3 Q4 SC Q4 SO
Efficiencies 0.827± 0.01 0.794± 0.01 0.872± 0.03 0.723± 0.02 0.735± 0.05

Raw Rates (mHz) 0.17 0.15 0.17 0.12 0.51
Efficiency Adjusted Rates 0.20 0.19 0.16 0.16 0.51

IV. CONCLUSION

In this work, we have presented a method of detecting errors in Ramsey tomography
sweeps, as well as understanding the efficiency of the error detection code. Each of the
four qubits on the chip we used has unique characteristics, so using these efficiencies, we
can then adjust the raw rates of qubit errors to reflect the true rates, as well as calculating
the systemic errors for this method. The values in Table II are the efficiencies of the error
detection code for errors with a size greater than 0.1 e and less than 0.5 e.
Future work will include a better understanding and modeling of the false positive rate
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as a function of jump size.
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