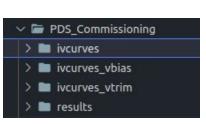
# NP04 PDS data taking planning

**IV CURVES** 

11<sup>th</sup> april 2024 Anna Balboni Anna Scanu Laura Pérez-Molina Renan de Aguiar

#### **TASK LIST**

|   | IV curves code optimization                                                                           |
|---|-------------------------------------------------------------------------------------------------------|
|   | <ul> <li>Debugging and improving the <u>output</u> and the <u>fits' performance</u></li> </ul>        |
| • | IV curves data organization                                                                           |
|   | O Moved to /eos/experiment/neutplatform/protodune/experiments/ProtoDUNE-II/PDS_Commissioning/ivcurves |
| • | Vbd computation and json file                                                                         |
|   | O 10.73.137.1xx_map.json saved for each IV curve with Vbd_per_AFE, OV, Vbd_trim                       |
| • | Volts vs dac curves for bias voltage                                                                  |
| • | Dead channel map                                                                                      |
|   | <ul> <li>First histogram to check the data available for each channel</li> </ul>                      |
| • | Script to program bias from .json file                                                                |
| • | Comparison of NP04 IV curves with lab ones measurements                                               |
| • | Code to repository                                                                                    |
|   | <ul> <li>Located in DUNE/PDS repository (<u>iv_analysis.py script</u>)</li> </ul>                     |
| • | Vbd versus temperature                                                                                |
|   | <ul> <li>First steps collecting all the analysed data + plot vs time</li> </ul>                       |


#### **Organization**

#### CODE TO REPOSITORY

```
(run inside <u>DAQ environment</u>)
git clone https://github.com/DUNE/PDS.git
cd PDS/scripts
python iv_analysis.py > /eos_path/.../Apr-09-2024-run00/log.txt
```

#### **OUTPUT DATA FOLDER**

/eos/experiment/neutplatform/protodune/experiments/ProtoDUNE-II

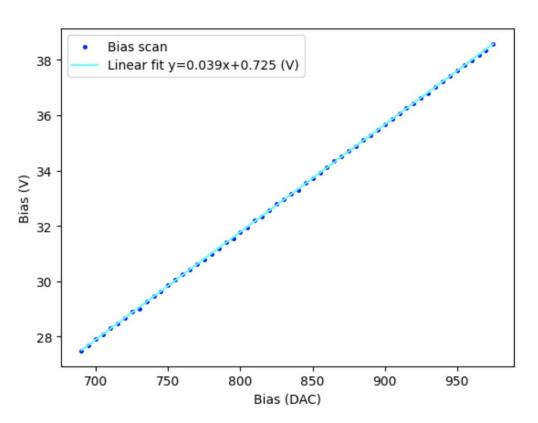


```
    → ivcurves: over V<sub>bias</sub> & V<sub>trim</sub> (14<sup>th</sup> Mar - 11<sup>th</sup> Apr)
    → ivcurves_vbias: over V<sub>bias</sub> (7<sup>th</sup> Mar - 14<sup>th</sup> Mar)
    → ivcurves_vtrim: over V<sub>trim</sub> (29<sup>th</sup> Feb - 7<sup>th</sup> Mar)
    - ivcurves_vtrim: over V<sub>trim</sub> (29<sup>th</sup> Feb - 7<sup>th</sup> Mar)
```

\*.root files

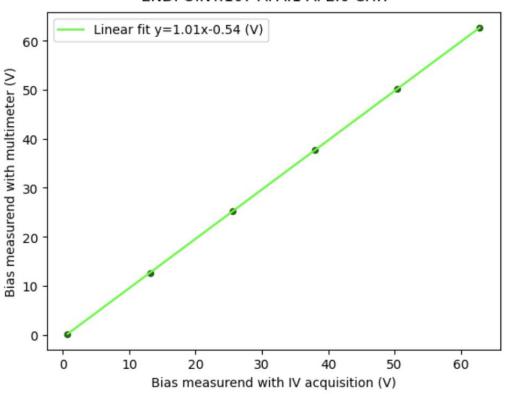
- → results: plots with results

## **Organization**

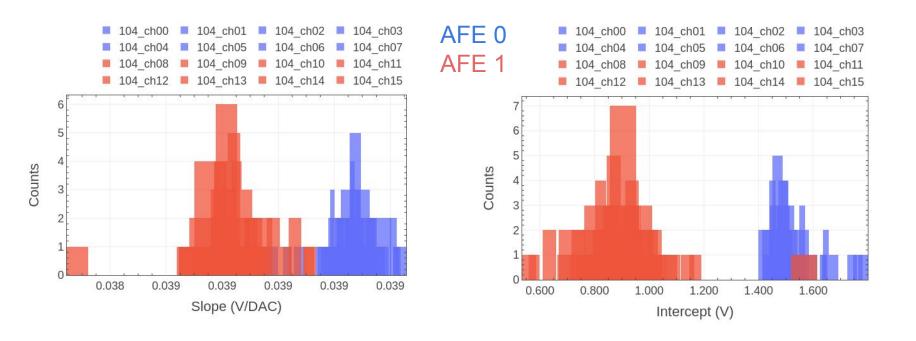

- Corrected few bugs
- Working towards a simple output for the  $V_{bd}$  vs T analysis
- Need to convert time to T using slow control

# $\boldsymbol{V}_{bd}$ conversion from DAC to $\boldsymbol{V}$

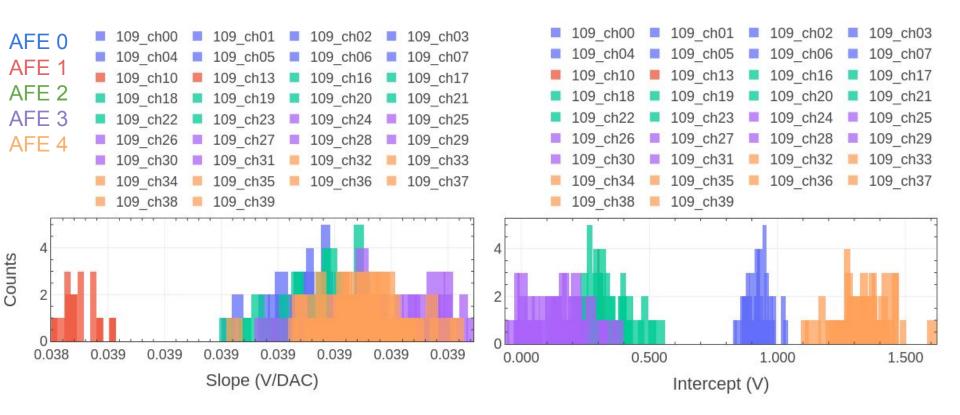
- We observe V<sub>hd</sub> higher than expected values
- Observed values around +5 V
- Trying to understand this discrepancy, working to calibrate the DAC counts to V


#### **DAC - Volt conversion: BIAS**

Bias conversion: DAC vs VOLT - ENDPOINT:107 APA:1 AFE:0 CH:7

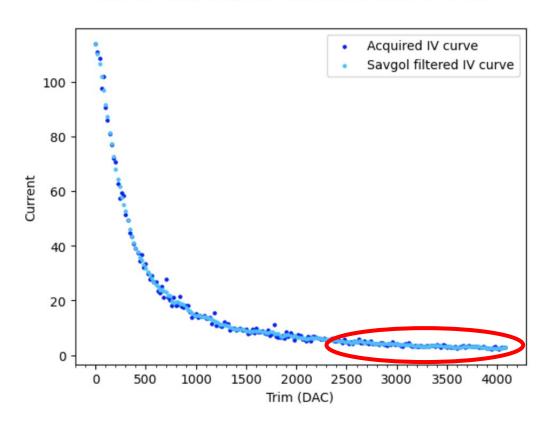



### Voltage-voltage comparison (DAPHNE vs multimeter)


Measured bias with multimeter vs IV acquisition ENDPOINT:107 APA:1 AFE:0 CH:7



#### Linear fit values of V vs DAC using Bias (IP: 104)




#### Linear fit values of V vs DAC using Bias (IP: 109)



### **ENDPOINT 107 - noise problem**

REV IV - ENDPOINT:107 APA:1 AFE:0 CH:0 SiPM: fbk



Current is never lower than 2 mV

Noisy channel

Vbd is hard to be determined

## V<sub>bd</sub> computation and json file

Output from iv\_analysis.py gives a \*\_map.json for each end-point with the  $V_{bd}$  computed with both fits and the averaged (suggested) value.

```
{"apa": 1,
"fbk": [0, 1, 2, 3, 4, 5, 6, 7],
"hpk value": 1560,
"Vbd per AFE": [946.25, 1372.5],
"Overvoltage": [75.57268016512126, 67.49634065686702],
293.1263805685769, 302.1162747168664, 285.8873496807448, 395.1923759082806],
"HPK Vbd trim": [1315.0011241755608, 900.062407261619, 1322.2926490344516,
```