

ColdADC QC test development

Jillian Donohue on behalf of the BNL CE group 4/12/2024

Outline

- ColdADC QC requirements
- Test script overview
- To-do list

ColdADC QC requirements

- Requirements:
 - Sampling frequency ~2 MHz
 - Number of ADC bits: ≥ 12
- Specifications:
 - Crosstalk: < 1%
 - Differential Nonlinearity (DNL): Absolute value < 1 LSB
 - Integral Nonlinearity (INL): < 1 LSB
 - Equivalent Number of Bits (ENOB) > 10.3
 - Overflow protection: When input signal exceeds the upper or lower ADC range, the output should be fixed at the maximum or minimum value.

ColdADC QC Procedure and Test Items based on DAT

Initialization checkout

- Largely similar to current LArASIC initialization checkout
- Ensures chips are placed correctly and rules out nonfunctioning chips
- Checks power consumption, reference voltages, and readout from LArASIC (pulse shape, noise)

Data capture time: 1 minute

Power cycling measurement

- Power cycling is recommended for cold testing to screen out chips with potential (rare) start-up issue
 - Keep this test item in warm testing as well to make sure both warm/cold test follow the same testing procedure
- Checks if current draw changes accordingly under different input buffer settings
 - SDC on or bypassed
 - DB on or bypassed
 - Input signal treated as SE or DIFF

Current draw with SDC and DB off.

I²C communication checkout

- Checks that registers have default values at powerup
- General I²C communication is necessarily verified during configuration for other tests

Register	Control Name	Description	Bits	Default = 0xFF
15 0x8F	ibuff0_ctrl[7:0]	200 μ A nominal current source for input buffer. Current is 2 μ A (257 – i_buff0_ctrl).	[7:0]	0xFF
Register	Control Name	Description	Bits	Default = 0xFF
16 0x90	ibuff1_ctrl[7:0]	200 μ A nominal current source for input buffer. Current is 2 μ A (257 – i_buff0_ctrl).	[7:0]	0xFF
Register	Control Name	Description	Bits	Default = 0xFF
17 0x91	i_vdac_0_ctrl[7:0]	200 μ A nominal current source for VDAC. Current is 2 μ A (257 – i_vdac_0_ctrl).	[7:0]	0xFF
Register	Control Name	Description	Bits	Default = 0xFF
18 0x92	i_vdac_1_ctrl[7:0]	200 μ A nominal current source for VDAC. Current is 2 μ A (257 – i_vdac_1_ctrl).	[7:0]	0xFF

Data capture time: 1 minute

Reference voltage measurement

- Check current monitors and default reference voltages
- Evaluate linearity of reference voltage DACs

Data capture time: 3 minutes 40 seconds

Autocalibration check

 Run ColdADC autocalibration and readout the autocali weights subsequently stored in its memory

Data capture time: 2 seconds

Open channel noise measurement

- Measure open channel RMS with single and differential buffer setting
- Original DAT does not allow channels to be completely disconnected from everything else (this is fixed in the upcoming revision)
 - Measure DC from LArASIC at 900 mV and 200 mV baselines
 - Measure open channel noise via mux input (channel X of each ASIC are tied together)

Data capture time: 30 seconds

Differential/integral nonlinearity (DNL/INL) measurement

- Looking for INL/DNL, missing codes
- Want ~100 samples/code → ≥1,638,400 continuous samples
- Sweep with a ramp (or a sine wave) from external waveform generator
 - Sampling rate of 2MHz & 100 samples/code \rightarrow sweep period of 1 second

Data capture time: 3 minutes

200

150

2500

5000

7500

ColdADC code

10000

12500

Counts per code

15000

DNL/INL measurement - Normalization (preliminary, w/ ColdADC calibrated)

Effective number of bits (ENOB) measurement

- Inject a sine wave into the ColdADC inputs
- Use WIB single-channel buffer firmware to capture 16,384 continuous samples of each channel (consecutively)

Note: Performance of ENOB testing is under development

Data capture time: 4 seconds

Ring oscillator frequency readout

Read out ColdADC ring oscillator frequencies as have been
measured in DAT firmware
Example readout

Example readout at room temp:

ADC0: 15.285402 MHz ADC1: 15.321691 MHz

ADC2: 15.200986 MHz ADC3: 15.831096 MHz ADC4: 15.486661 MHz ADC5: 15.517424 MHz ADC6: 15.897482 MHz

ADC7: 15.565368 MHz

Process Corner	-200 C	27 C
Slow-Slow	18.4 MHz	16.1 MHz ←
Typical-Typical	24.2 MHz	18.9 MHz
Fast-Fast	34.9 MHz	22.5 MHz

Table 6: Oscillation Frequency

Data capture time: 2 seconds

Gain and overflow test

- Inject a 200 Hz ramp waveform (0-2.0V) into the ColdADC inputs
- Use WIB single-channel buffer firmware to capture 16,384 continuous samples of each channel (consecutively)

Further analysis is undergoing to extract some ADC performance metrics, such as DC offset, range of input, overflow

Data capture time: 3 seconds

To-do list

- 1. Verify and finalize QC scripts
- Script is being verified on the original DAT board.
- Revised DAT board is expected to deliver optimized hardware performance
- 2. Update DAT FPGA FW for the revised DAT board
- 3. Complete analysis scripts for QC data
- Generate QC report for each ASIC
- Build pass/fail criteria
- 4. Database
- Export readable format (json file) for hardware database
- 5. QC data backup

...= Total data taking time of ~12.35 minutes

Summary

- Data taking QC scripts for ColdADC based on DAT board is basically complete
 - To be verified with small batch of ColdADC chips
- Scripts for data analysis are to be finalized

