Low energy electron reconstruction for background calibration

17/04/24 Emile LAVAUT

SingleHit module

physics:

- Available in the last version of LArSoft
- Search for single isolated hits candidate for beta decay (Ar39, K40, radiological ...)

Peaktime

ere			
	_		I
			I
			I
			I
			Ι
			I
	+		

SingleHit module

- Available in the last version of LArSoft
- Search for single isolated hits candidate for beta decay (Ar39, K40, radiological ...)
- Time coincidence (tt) tuned for PDVD \rightarrow mean time for an electron to travel from induction 1 to collection

physics:

Peaktime

SingleHit module

- Available in the last version of LArSoft
- Search for single isolated hits candidate for beta decay (Ar39, K40, radiological ...)
- Time coincidence (tt) tuned for
 PDVD → mean time for an electron
 to travel from induction 1 to
 collection
- Spatial coincidence \rightarrow want a signal in the **3 views**
- SpacePoint is a barycentre of the intersection point (with ind. energy)

- Simulated 1MeV electron in PDVD
- Next step : clustering all this SpacePoint for energy comparison
- 1 cluster by decay
- Cluster position is a barycentre of SpacePoint (with collection energy)

[cm]

Ν

O SingleHit SpacePoint

- ★ True SpacePoint
- Induction 1 Point
- Induction 2 Point

Simulated event in PDVD

- 4 MeV, 5 MeV, 10 MeV, 20 MeV }
- 250 events like that were simulated

• 8 electrons in same X = 50 cm but energy = { 0.5 MeV, 1 MeV, 2 MeV, 3 MeV,

Reconstructed Cluster

- Here selection with windowChannel_int = ± 3
- We reconstruct 1727 clusters for 250 event $\rightarrow ~\sim 6.9$ clusters/ events
- We never reconstruct 0.5 MeV electron
- Start to see some patterns

Efficiency estimation

Number of cluster(d < 25 cm) efficiency Number of simulated events

with d the distance to the origin MCTruth electron

Energy Spectrum

Efficiency comparison

- Made this analysis with :
 - windowChannel_int = ± 1
 - windowChannel_int = ± 2

- windowChannel_int = ± 3
- Want to compare with Pandora \rightarrow I looked at the reconstructed track end point and start point

Conclusion

- The module is available for everyone (very last version need to be pushed) Has a good efficiency at E < 5 MeV
- Need more simulation on electron to evaluated purity and completeness
- Currently testing it on PDSP data

Annexe

Annexe